Denne rapport tilhører

STATOIL

L&U DOK. SENTER

L. NR. 20088370035

KODE Well 31/2-8

nolb

Returneres etter bruk

WELL SUMMARY

A/S NORSKE SHELL

WELL NO. 31/2-8

WELL SUMMARY

A/S NORSKE SHELL

WELL NO. 31/2-8

GENERAL SUMMARY

OPERATOR

A/S Norske Shell

WELL NO.

31/2-8

OPERATOR'S REPRESENTATIVES

Mr. Jim Hulme Mr. Jim Daly

CONTRACTOR

Dolphin Services

RIG

Borgny Dolphin

CONTRACTOR'S REPRESENTATIVES

Mr. Harald Frigstad Mr. H. Kilpatrick

ANCHOR ENGINEERS

Mr. Chris Atkinson Mr. C. Blanchard Mr. S. Wersland

de la constantina

WATER DEPTH	345,5	m	
SEABED to RKB	370,5	m	
36" HOLE DRILLED TO	480	m	
30" CASING SET AT	469,5	m	
26" HOLE DRILLED TO	840	m	
20" CASING SET AT	826	m	
17½" HOLE DRILLED TO	1745	m	
13%" CASING SET AT	1734	m	
12¼" HOLE DRILLED TO	2743	m	
9%" CASING SET AT	2732	m	
81/2" HOLE DRILLED TO	3375	m	(T.D.)

WELL NAME 31/2-8

OPERATOR

A/S NORSKE SHELL

CHRIS ATKINSON

ENGINEERS

DATE 15.6.82

Arrived at new location. Ran and tensioned anchors. Ballasted down rig.

Made up 36" BHA. Prepared to spud.

Made up + 1400 bbls prehydrated Bentonite spud mud.

Carried out screen and chemical inventory checks. Started servicing shale shakers.

DATE 16.6.82

Spudded in well at 05:30 hrs at 370 m. Drilled 36" hole with seawater and hivis pills as required.

Drilled to 480 m. Pumped 100 bbls hivis pill. Tripped to seabed. RIH to TD.

3 m fill. Displaced hole to spud mud (950 bbls).

POOH to run casing. Jetted well head with seawater.

Dumped and cleaned out all pits after displacing hole. Finished servicing shale shakers.

17.6.82

Rigged up and ran 30" casing. Cemented same after circulating for 3 hours to get good returns to seabed.

Made up 14 3/4"/26" assembly. Drilled out cement.

Mixed 170 bbls $CaCl_2$ cement mix water. Mixed gel/seawater mud for next section. (\pm 1000 bbls prehydrated Bentonite.) Dressed shakers with 20/B60 screens.

WELL NAME

31/2-8

OPERATOR

A/S NORSKE SHELL

ENGINEERS

CHRIS ATKINSON

DATE 18.6.82

Drilled cement and shoe - and 5 m new hole to 485 m. Circulated hole clean. POOH. Rigged up and ran marine riser and pin connector. Made up 14 3/4" bit and BHA. RIH. Tested diverter lines. Displaced hole to mud. Drilled 14 3/4" pilot hole 485 m - 545 m.

Watered back spud mud to give 1420 bbls gel/seawater mud for displacing hole.

Weighted up pit no. 4 as kill mud 1.35 SG.

Made Sapp/Caustic bags ready if required for Barite plug.

DATE 19.6.82

Drilled 14 3/4" pilot hole 545 m - 840 m. Circulated 1 hour. POOH for wiper trip to 30" shoe. RIH to bottom.

Heavy dilution of system while drilling to keep mud weight below 1.10 SG.

Changed 2 broken 200 mesh Thule screens.

DATE 20.6.82

Circulated hole clean. Pumped 300 bbls 1.35 SG mud in open hole. POOH. Ran logs. RIH with 14 3/4" bit to bottom. Circulated out 1.35 SG mud via riser dump valve. POOH.

Made up 14 3/4" bit with 26" under reamer.

RIH to 485 m. Under reamed 485 - 575 m.

Continued dilution of system to keep mud weight at 1.10 SG, max. Dumped and cleaned out sand traps during logging. Maintained viscosity with CMC hivis.

Changed out broken 200 mesh Thule screen.

Mixed 280 bbls of 1.30 SG mud in pit no. 4 as kill mud.

WELL NAME 31/2-8

OPERATOR A/S NORSKE SHELL

ENGINEERS

CHRIS ATKINSON

DATE 21.6.82

Under-reamed to 26" from 575 to 820 m. (Circulated 1 hour to reduce mud weight.) Maintained mud weight with heavy seawater dilution at max. 1.13 SG in - 1.15 SG out. Added Polymer for rheology maintenance.

Circulated $2\frac{1}{2}$ hours at TD to clean hole. Pumped slug and POOH to 30" shoe. Opened riser dump valve and observed well. Filled riser again. Started RIH to TD.

Mixed Pit no. 3 and Pit no. 2 to 1.30 SG prior to spotting hole.

DATE 22.6.82

RIH to 820 m. Circulated bottoms up. Displaced hole (T.D. - Seabed) with 1100 bbls 1.30 SG mud. POOH with under reamer and laid down. Opened dump valve. Observed well. Rigged up and ran logs. Well flowed. Filled riser. RIH with new 26" underreamer to 464.5 m. Re-reamed sections to bottom. Under reamed ahead to 840 m. Circulated hole clean while weighting up surface volume to 1.40 SG.

Mixed 360 bbls new gel/seawater mud to maintain surface volume required. Took high weight returns into reserve pit when started to re-ream.

DATE

23.6.82

Displaced hole with 1100 bbls 1.40 SG mud. Opened dump valve. Well flowing. Weighted up and pumped 240 bbls 1.40 SG. Opened dump valve. Flow again. Filled riser via trip tank. POOH to seabed. Displaced riser to seawater. Opened dump valve. Well flowing. Displaced back to 1.24 SG mud. Observed well. O.K. RIH to 30" shoe - then 520 m. O.K. Weighted up 400 bbls to 1.65 SG - pumped at 520 m. Filled riser with seawater. Opened dump valve. Well flowed. Filled riser (35 bbls). POOH to seabed. Circulated riser to clean out spots. Observed well. O.K. Opened dump. O.K. POOH. Observed. O.K. Rigged up Schlumberger and ran log. Prepared to pull riser.

Mixed + 1050 bbls new gel/seawater mud to maintain surface volume.

WELL NAME 31/2-8

OPERATOR A/S NORSKE SHELL

ENGINEERS

CHRIS ATKINSON

DATE

24.6.82

Pulled riser and pin connector. Rigged up and ran Schlumberger log. Rigged up and ran 20" casing. Filled casing with 1.65 SG mud while running in.

Dumped 40 bbls mud from pit no. 6 and cleaned out pit. Mixed 150 bbls CaCl₂ cement mix water. Dumped and cleaned out sand traps (140 bbls.)

DATE 25.6.82

Ran and landed 20" casing with shoe at 226 m. Circulated with 700 bbls 1.65 SG mud. Cemented casing. Displaced with seawater. No backflow. POOH with running tool. RIH with jetting tool and jetted well-head clean. Tested BOPs and prepared to run BOPs and marine riser.

Dumped and cleaned out all pits, mixing lines and jet line to Halliburton unit prior to taking on Brine. Dressed shakers to B20/B40 + 20/B40 + 20/B40. Thule unit to 150 x 150.

Took on 660 bbls KCl brine \pm 95 ppb from boat. Started mixing KCl/Polymer system.

DATE

26.6.82

Continued running BOP stack. Tested kill and choke lines. Pressure losses. Pulled stack to surface. Laid down marine riser. Worked stack. Re-ran stack and riser.

Finished mixing total + 1400 bbls KCl/Polymer at 1.26 SG.

WELL NAME 31/2-8

OPERATOR

A/S NORSKE SHELL

ENGINEERS

ATKINSON/BLANCHARD/WERSLAND

DATE 27.6.82

Landed stack. Tested BOPs.

Sheared mud with mix line jets.

Received shaker screens as per order 16.6.82.

DATE 28.6.82

Made up $17\frac{1}{2}$ " assembly. RIH. Drilled cement and plug. Displaced hole to mud at shoe. Drilled shoe and drilled from 840 to 845 m. Circulated hole clean. Leak off test equivalent to 1.80 SG. POOH. Made up $8\frac{1}{2}$ " assembly. RIH. Drilled $8\frac{1}{2}$ " hole from 845 m to 938 m.

Mixed reserve pits (no. 2 at 1.27 SG and no. 3 at 1.1 SG) and kill mud at 1.60 SG. Total + 1000 bbls.

Treated for some cement contamination. Increased system mud weight to 1.27 SG.

Losses at shakers due to Ancopol staying in system for considerable period before being taken up by $8\frac{1}{2}$ " hole. Removed B40 on two shakers for a time to minimize losses - no losses on Thule.

DATE 29.6.82

Drilled 8½" hole from 938 m to 948 m. Survey. Tight hole at 932 m - 948 m. Reamed and washed to 951 m. Made wiper trip to shoe. No drag. Drilled to 1054 m. Slugged pipe. POOH to 816 m. 50.000 lbs. max. drag. RIH to 1009 m. Hole tight. Washed to 1018 RIH to 1037 m. Drilled to 1063 m. Loss of pressure due to washed out nozzle. POOH. Tight hole at 949 m.

Reamed. POOH to make up new BHA (17½").

WELL NAME 31/2-8

OPERATOR A/S NORSKE SHELL

ENGINEERS BLANCHARD/WERSLAND

30.6.82

Reduced Ca^{++} and Mg^{++} content with Soda Ash and Caustic Soda. Reamed from 845 m to 1063 m. Used Halliburton pump due to no.2 mud pump being repaired. Ran survey. Wiper trip. Drilled to 1228 m.

Changed lower shaker screen to 60B.

DATE

1.7.82

Drilled to 1274 m. Ran survey - unable to retrieve. POOH. RIH. No fill - tight spot from 825 m to 850 m. Drilled to 1425 m.

Changed shaker screens to 40B over 50S.

DATE 2.7.82

Drilled to 1485 m. Ran survey. Line snapped on survey tool. POOH to 716 m (60.000 lbs drag max.) RIH to 1114 m - tight hole. Reamed to 1130 m. RIH - $\frac{1}{2}$ m fill.

RIH to 1114 m - tight hole. Reamed to 1130 m. RIH - ½ m fill. Drilled to 1504 m - circulated out trip gas. Drilled to 1580 m-survey. Drilled to 1612 m.

WELL NAME 31/2-8

A/S NORSKE SHELL OPERATOR

ENGINEERS

BLANCHARD/WERSLAND

DATE

<u>3.7.82</u>

Drilled $17\frac{1}{2}$ " hole from 1612 m to 1685 m. Circulated hole clean. Survey. POOH. Tight hole from 1685 m to 1485 m.

Recovered survey at shoe. RIH to 1583 m. Reamed tight spot 3½ stds. above bottom. Drilled 1685 m to 1745 m.

Mixed new mud in pit no. 3 for dilution.

DATE 4.7.82

Circulated hole clean. POOH to 1485 m, tight hole from 1685 m to 1550 m. Ran back in to 1745 m.

POOH to 20" casing shoe. RIH to 1745 m - no fill.

Circulated and POOH with no drag. Ran logs, second log stood up at 1605 m. RIH to ream tight spot. Washed and reamed from 1592 m to 1628 m and from 1706 m to 1745 m. Circulated out trip gas.

POOH to 1583 m.

DATE

5.7.82

RIH to 1745 m. Circulated hole clean. Mud weight up to 1.4 SG. Added KCl due to low KCl content in mud.

POOH. Ran logs. RIH and circulated hole clean.

POOH. RIH to retrieve wearbushing in BOP.

.

WELL NAME 31/2-8

A/S NORSKE SHELL OPERATOR

ENGINEERS BLANCHARD/WERSLAND

DATE

6.7.82

POOH. Ran 13 3/8" casing. Cemented same, shoe at 1736 m. Displaced cement and lost circulation after 2400 strokes. Plug did not bump. Tested to 4250 psi. RIH to test BOP by midnight. Lost approx. 370 bbls mud. Dumped pit no. 4 and sand traps. Mixed new mud in pit no. 2 and 3. Diluted mud - 1.4 SG to 1.20 SG with water in pit no. 2 and 3. Mixed total of 300 bbls new mud.

DATE 7.7.82

Continued testing BOPs. RIH with test-tool and stinger. Tested shear-rams. RIH with fishing assembly.

Transferred ½ pit no. 1 to pit no. 4. Mixed new diluted mud in pit no. 1 and 4. Mud weight 1.2 SG.

Transferred 140 bbls from pit no. 3 to sandtraps. Mixed up new mud in pit no. 3. New mud built: 400 bbls in pit no. 1, 3 and 4 together.

DATE

8.7.82

Continued RIH with fishing assembly. Rotated on to fish. POOH (40.000 lbs overpull). Made up bottom hole assembly with 12½" bit and casing scraper. Set packer - tested casing to 3000 psi.

Active pit dumped by a mistake. Mixed up pit no. 1 and weighted up to 1.18 SG.

WELL NAME 31/2-8

OPERATOR A/S NORSKE SHELL

ENGINEERS

ATKINSON/BLANCHARD

DATE 9.7.82

POOH. Made up 12 1/4" bit. RIH. Drilled float collar at 1724 m. Drilled new hole 1745 m to 1750 m. Circulated clean. Leak off test equivalent to 1.45 SG. POOH. Made up 150 m of 2 7/8" tubing for stinger. RIH to 1750 m. Cemented and pulled back to 1600 m. Squeezed cement (total 25 bbls). Slugged pipe and POOH. Laid down stinger.

Mixed total \pm 1000 bbls new seawater/Drispac mud. Dumped and cleaned sand traps.

DATE 10.7.82

Made up 12 1/4" bit and new BHA. RIH and tagged cement at 1675 m. Drilled out cement from 1678 m to 1750 m. Drilled from 1750 m to 1752 m. Circulated hole clean ($1\frac{1}{2}$ hours). Leak off test equivalent to 1.61 SG. Continued drilling 12 1/4" hole from 1752 m to 1812 m. Drilling break. Circulated bottoms up. Drilled ahead from 1812 m to 1842 m. Circulated bottoms up. POOH to core.

Changed active pit to no. 2. Dumped 25 bbls in pit no. 1 and cleaned out. Mixed kill mud in pit no. 4 to 1.40 SG (310 bbls).

DATE 11.7.82

Finished POOH. Made up 8 15/32" core bit and barrel and new BHA. RIH. Washed and reamed from 1652 m to 1678 m. Continued RIH. Washed from 1833 m to 1842 m. Dropped ball and cored from 1842 m to 1851.5 m. POOH - recovered core (100%) no. 1. Made up 18 m core barrel. RIH. Cored from 1851.5 m to 1870 m. Pumped slug and POOH.

Maintained rheology with Drispac. Kept mud weight below 1.22 SG.

WELL NAME 31/2-8

OPERATOR A/S NORSKE SHELL

ENGINEERS

ATKINSON

DATE 12.7.82

Recovered core no. 2 (95% recovery). Made up new core head. RIH. Washed from 1861 m to 1870 m. Cored from 1870 m to 1888.5 m. Pumped slug and POOH. Recovered core no. 3 (100% recovery). Made up new 12 1/4" bit and BHA. RIH. Reamed $8\frac{1}{2}$ " hole from 1842 m to 1888.5 m. Drilled new 12 1/4" hole to 1896 m.

Kept mud weight at 1.22 SG max. Maintained rheology and fluid loss control as necessary.

DATE 13.7.82

Drilled 12 1/4" hole from 1896 m to 2106 m with surveys. POOH. Tight at 2016 m. Worked and jarred pipe. No success.

Rigged up circulation head and circulated. Returns O.K. Attempts made to free stuck pipe.

14.7.82

Attempted freeing pipe by jarring. Pumped \pm 80 bbls pipe free pill at 1.20 SG. Chased with 70 bbls mud - pipe came free. Pulled out to shoe. Retrieved survey. RIH to 2105 m. Continued drilling 12 1/4" hole to 2172 m. Circulated bottoms up.

POOH to change bit.

WELL NAME	31/2-8

OPERATOR A/S NORSKE SHELL

ENGINEERS

ATKINSON

DATE

<u> 15.7.82</u>

Made up new bit. Added junk basket to BHA (broken teeth in hole). RIH. Drilled 12 1/4" hole from 2172 to 2278 m. Survey. (11 stds. short trip.) Drilled ahead from 2278 m to 2336 m.

Maintained rheology, fluid loss and alkalinities as per spec. Dumped gumbo box and shaker box as required. Maintained mud weight at 1.23 SG max.

DATE 16.7.82

Drilled 12 1/4" hole from 2336 m to 2382 m. 8 stds. short trip. Tight hole 2280 m - 2261 m (30-50.000 lbs overpull). RIH to 2382 m. Drilled ahead from 2382 m to 2416 m. Circulated bottoms up. POOH for bit change. Made up new bit. RIH.

Maintained properties as previously. Changed one broken 150 Thule screen. Dumped gumbo box as necessary.

DATE

17.7.82

Continued RIH. Drilled 12 1/4" hole from 2416 m to 2522 m. 14 stds. short trip.

RIH. Drilled from 2522 m to 2568 m.

WELL NAME 31/2-8

OPERATOR A/S NORSKE SHELL

ENGINEERS ATKINSON

DATE 18.7.82

Drilled 12 1/4" hole from 2568 m to 2669 m. Survey. 10 stds. short trip. RIH. Drilled from 2669 m to 2743 m. Circulated bottoms up at casing point. Survey. POOH to shoe. RIH. Circulated to clean hole prior to logging.

Maintained rheology, alkalinities and fluid loss in line with spec. - Water additions for max mud weight of 1.24 SG.

Dumped gumbo and shaker boxes as necessary.

DATE 19.7.82

Finished circulating hole clean. POOH. Ran logs.

Dumped and cleaned out shaker box and gumbo box.

DATE 20.7.81

Continued logging.

WELL NAME 31/2-8

OPERATOR

A/S NORSKE SHELL

ENGINEERS ATKINSON/ BLANCHARD

DATE 21.7.82

Rigged down Schlumberger. Made up $12\ 1/4$ " bit (no nozzles) and BHA. RIH to TD for wiper trip. Circulated hole clean (2 hours). POOH. Rigged up to continue logging.

DATE 22.7.82

Logged. Rigged down. Made up 12 1/4" bit and BHA. RIH to TD for wiper trip. Reamed and washed last joint to bottom. Circulated hole clean. POOH to run casing.

Dumped and cleaned out sand trap (40 bbls).

DATE 23.7.82

POOH to run casing. Ran 9 5/8" casing and cemented.

Displaced the cement with 111 bbls freshwater followed by 549 bbls of mud. Full returns throughout.

WELL NAME 31/2-8

OPERATOR A/S NORSKE SHELL

ENGINEERS

BLANCHARD

DATE 24.7.82

Tested seal assembly and BOPs. Ran wear bushing and laid down drill collars. Made up new BHA $(8\frac{1}{2}")$.

DATE 25.7.82

RIH with new BHA. Tagged cement at 2684 m. Drilled to 2748 m. Made leak off test to 1.89 SG equivalent. POOH. RIH with bit no. 14.

Drilled to 2763 m. Added 2 lbs/bbl Lignosulphonate to mud system.

DATE 26.7.82

Drilled to 2783 m. Circulated bottoms up. Drilled to 2808 m. Dropped survey. POOH to casing shoe. Recovered survey. Drilled to 2827 m. Circulated bottoms up for sample. Drilled to 2867 m and circulated hole clean. Ran survey. POOH. Dumped 140 bbls mud from sand traps and cleaned these.

Changed shaker screens and mud cleaners screens.

WELL NAME	31/2-8	

OPERATOR A/S NORSKE SHELL

ENGINEERS BLANCHARD

DATE 27.7.82

Drilled to 2903 m. Dropped survey. Retrieved same.

Drilled to 2965 m.

DATE 28.7.82

Drilled to 2988 m. High torque at 2988 m - 2998 m. Ran survey. POOH 11 stands to retrieve survey. Drilled to 3019 m. High torque. POOH. Changed bit and stabilizer. RIH.

Drilled to 3024 m. Added prehydrated Bentonite to active system.

DATE

29.7.82

Drilled to 3049 m. High torque at 3049 m - 3055 m. Worked pipe and reamed. POOH. Misrun on survey. RIH. Drilled to 3059 m. Dropped survey and retrieved. Drilled to 3060 m. High torque. POOH.

31/2-8**WELL NAME**

A/S NORSKE SHELL

OPERATOR

ENGINEERS

BLANCHARD

DATE 30.7.82

Reamed to 3060 m. Drilled to 3070 m. Drilling break. Circulated bottoms up. Drilled to 3080 m.

Reamed from 3055 m to 3080 m. POOH. No drag.

DATE 31.7.82

RIH to 3060 m. Reamed from 3060 m to 3080 m.

Drilled $8\frac{1}{2}$ " hole from 3080 m to 3198 m. Circulated hole clean. Dropped survey at 3198 m.

DATE 1.8.82

I. range

Made wiper trip to 3002 m.

Retrieved survey. RIH from 3198 m to 3317 m.

WELL NAME 31/2-8

OPERATOR A/S NORSKE SHELL

ENGINEERS BLANCHARD

2.8.82

POOH looking for washout. Retrieved survey. RIH. Drilled ahead to 3341 m. POOH looking for second washout.

Found on stand no. 42.

RIH and drilled to 3362 m.

DATE 3.8.82

Drilled from 3362 m to 3375 m. Circulated bottoms up.

Made wiper trip to 9 5/8" shoe. Circulated hole clean. Dropped survey at 3375 m. POOH.

Ran logs. Cleaned out sand traps.

DATE 4.8.82

Ran logs in 8½" hole.

WELL NAME 31/2-8

OPERATOR A/S NORSKE SHELL

ENGINEERS BLANCHARD

DATE 5.8.82

Finished running logs.

RIH to set cement plugs in $8\frac{1}{2}$ " hole.

DATE 6.8.82

Set cement plugs.

DATE

OPERATOR:

A/S NORSKE SHELL

WELL NO.

31/2 - 8

36"

HOLE/ ____30"

_ CASING INTERVAL

Well was spudded on 16.6.82 in 345.5 m water with a $17\frac{1}{2}$ " bit and 36" hole opener .

36" hole was drilled from 370 m to 480 m. with seawater and hivis pills (prehydrated gel) as required.

After a check trip the hole was displaced with \pm 900 bbls hivis mud (100% excess) and then 30" casing was run to 469.5 m and cemented.

OPERATOR:

A/S NORSKE SHELL

31/2-8

WELL NO.

20" 26" _ HOLE/ __

_ CASING INTERVAL

(14 3/4" Pilot hole)

A gel/sea water mud system was used in this section which was obtained by watering back hi-vis spud mud.

A 14 3/4" pilot hole was drilled from 480 m to 840 m. Mud weight kept below 1.10 SG by continuous dilution and running of all solids control equipment. After circulating the hole clean, the open hole was displaced with 1.35 SG and then logs were run.

It was decided to under-ream the section to 26" due to suspected gas zone at + 520 m from the logs.

Under-reamed from 485 m to 820 m - kept mud weight at 1.13 SG max with heavy dilution. Costs were greatly increased for the section due to the need for rheology maintenance with CMC hi-vis/Drispac/XC-Polymer which normally not are required when the hole is opened up without the riser on and only hi-vis pills used.

After a short trip the hole was displaced with + 1100 bbls of 1.30 SG mud (TD - seabed) and log run.

The riser dump valve was opened to check for flow as zone flow was suspected. Well flowed. Under-reaming then continued to 840 m. Well flowed. At this point + 1100 bbls of 1.40 SG mud were used to displace the hole to seabed. Again the well was seen to flow after opening the dump valve. Well flowed.

After various attempts of stopping flow a volume of 400 bbls of 1.65 SG mud was spotted, and eventually the well was judged to have stopped flowing. A log was then run and the riser pulled, after which another log was run and the hole found to be in gauge. 20" casing was then run. This was filled with 1.65 SG mud while running in and after landing the casing a further 700 bbls of 1.65 SG mud was pumped to clean the hole. The casing was then cemented and preparations made to run the BOP stack.

Costs for the section were greatly increased above normal, due to the need for the \pm 2700 bbls extra weighted mud used after under-reaming.

OPERATOR:

A/S NORSKE SHELL

31/2-8

WELL NO.

HOLE/ 13 3/8" CASING INTERVAL

17½" hole with 8½" Pilot hole

The cement in the 20" casing was drilled out and the hole was displaced to fresh KCl mud. After drilling to 845 m a leak-off test was performed to 1.80 SG equivalent. A pilot 8½" hole was drilled due to a suspected gas zone. Tight hole was encountered from 932 m to 948 m. Also tight hole was found at 1019 m and again, while pulling out, at 999 m. At this point a new BHA was set up for 17½" hole.

Reaming was done from 845 m to 1063 m. While drilling ahead tight hole occured at 1130 m, and at 1504 m trip gas was circulated out of hole. At 1685 m the well was circulated clean and a wiper trip was made. After running in hole to 1583 m a tight spot was reamed 3½ stands above bottom. Drilled ahead to 1745 m and ran a wiper trip and circulated well clean prior to logging. Ran first log but unable to get past 1605 m. Ran in hole and reamed from 1592 m to 1628 m and increased KCl content in mud to 43 lbs/bbl for better inhibition. Ran log no. 2. Made a wiper trip. Ran 13 3/8" casing. During displacement of the cement 365 bbls was lost and the plug did not bump. Mixed up new mud and reduced mud weight to 1.20 SG. Dumped sand traps and tested BOP's for next section of hole.

OPERATOR:

A/S NORSKE SHELL

WELL NO.

31/2 - 8

12 1/4" HOLE/ 9 5/8" _CASING INTERVAL

> After making up the 12 1/4" BHA and RIH, cement, 13 3/8" shoe and 5 m new hole were drilled. A leak -off test gave 1.45 SG breakdown equivalent indicating a bad cement job so a squeeze job was carried out.

It was necessary to mix + 1000 bbls of new seawater/Drispac mud during the drilling of cement. Due to bad contamination dumping was necessary.

A second leak-off test at 1752 m gave 1.61 SG breakdown equivalent so it was decided to drill ahead, 12 1/4" hole being drilled to 1842 m. After a drilling break gas was found on bottoms Coring was started with 8 15/32" core bit and continued until 1880.5 m. Drilling of 12 1/4" hole continued from this point.

Pipe became stuck when POOH at 2016 m after drilling to 2106 m, and was eventually freed after 10 hours by pumping a 80 bbls free pipe weighted pill.

Drilled ahead then to 2743 m - casing point, maintaining max mud weight of 1.24 SG by dilution and keeping fluid loss below 5 cc with LF-5 additions.

Logs were then run for 3½ days with one wiper trip carried out after 2 days and the hole in good shape.

Ran and cemented 9 5/8" casing with shoe at 2732 m.

A/S NORSKE SHELL

OPERATOR:

31/2 - 8

WELL NO.

8^յչ "

HOLE/ _____ CASING INTERVAL

Tagged cement at 2684 m and drilled to 2748 m. Ran leak off test and pulled out of hole for a new bit. The system was then treated with 2 lb/bbl Lignosulphonate.

At 2988 m high torque was encountered and also at 3019 m. It was suggested at this time to add 2% lubricant to the mud, but hole problems appeared to be due to the formation and not the drilling Prehydrated Bentonite was added to the system to help torque. At 3049 m to 3055 m there was still a torque problem and this area was reamed. When running back in hole all areas of high torque were reamed. When drilling ahead to 3080 m, no drag was encountered while pulling out of hole. Fewer torque problems occurred after 3080 m and we drilled to 3317 m. At this depth a drop in pressure made it necessary to pull out of hole because of a washout. Then at 3341 m another washout was found on the 42nd stand. Drilling continued to 3375 m. A wiper trip was made to the 9 5/8" shoe and the hole was circulated clean at 3375 m for logging. Logs were run and the 82" section was plugged with cement.

A/S NORSKE SHELL OPERATOR

WELL NO. 31/2-8

MATERIAL CONSUMPTION & COST ANALYSIS

				•	
36" HOLE DRILLED	TO 480	Meters	0" CASI	NG SET AT	Meters
ACTUAL AMOUNT OF HOLE	E DRILLED	109 Met		DAYS ON INTE	RVAL 3
DRILLING FLUID SYSTEM	PRE	HYDRATED	GEL (SPUD	MUD)	
<u></u>		1			,
MATERIAL	UNIT SIZE	PROG.	USED	VARIANCE ±	COST
BENTONITE	M/T	20	28	+ 8	9 184,-
CAUSTIC SODA	25 kg	20	32	+ 12	608,-
SODA ASH	50 kg	3	16	+ 13	296,-
LIME	25 kg	6	8	+ 2	40,-
				-	
	-				
·					

	•				
		1		.1	1
COST/DAY US \$ 3	3 376,- TO	OTAL COST F	OR INTERVAL	US \$ 10	128,-
COST/Mt. US \$	92,92 PF	ROG. COST F	OR INTERVAL	US \$ 7	025,50
ENGR. COST	C	OST VARIANO	CE FOR INTERV	/AL _{+US} \$ 3	102,50

WELL NO. 31/2-8

MATERIAL CONSUMPTION & COST ANALYSIS

r		Meters			Meters
26" HOLE DRILLED	TO 840	xfxxx 20	" CASI	NG SET AT	826 xxx
ACTUAL AMOUNT OF HOLE	DRILLED	361 Meter		DAYS ON INTER	RVAL 7
DRILLING FLUID SYSTEM	GEL/SE	AWATER			
				1	
MATERIAL	UNIT SIZE	PROG.	USED	VARIANCE ±	COST
BENTONITE	M/T	45	10	- 35	3 280,-
BARITE	M/T	0	397	+ 397	53 198,-
CAUSTIC SODA	25 kg	49	57	+ 8	1 083,-
SODA ASH	50 kg	8	21	+ 13	388,50
CMC HI VIS	25 kg	0	121	+ 121	7 381,-
DRISPAC REG.	25 kg	0	59	+ 59	9 988,70
XC POLYMER	50 lbs	0	28	+ 28	9 296,-
T.F. 5	25 kg	43	0	- 43	_

CMC HI VIS	25 kg	0	121	+ 121	7 381,-
DRISPAC REG.	25 kg	0	59	+ 59	9 988,70
XC POLYMER	50 lbs	0	28	+ 28	9 296,-
LF 5	25 kg	43	0	- 43	_
			<u></u>		
	<u> </u>	· · · · · · · · · · · · · · · · · · ·			
	•				
	·	l	<u>. </u>	1,,	

}				
COST/DAY		TOTAL COST FOR INTERVAL		
00017071	US \$ 12 088,-	TOTAL COST FOR INVERVAL	US \$	84 615,20
COST/Mt.	US \$ 234,39	PROG. COST FOR INTERVAL	US \$	17 903,-
ENGR. COST		COST VARIANCE FOR INTERVAL	+US \$	66 712,20
# Dispositive				

OPERATOR A/S NORSKE SHELL

WELL NO. 31/2-8

MATERIAL CONSUMPTION & COST ANALYSIS

17½"	HOLE DRILLED TO	1745 Meters	13 3/8"	CASING SET AT	1736	Meters XXXX
ACTIIAI AI	MOUNT OF HOLE DR	11 ED 905	Meters	, DAYS ON IN	TERVAL	12

DRILLING FLUID SYSTEM

KC1/POLYMER

			 	1	
MATERIAL	UNIT SIZE	PROG.	USED	VARIANCE ±	COST US \$ =
KCl (Brine)	bbls	_	990	-	15 304,41
KCl	50 kg	1122	1065	- 57	19 063,50
DRISPAC REG.	50 lbs	106	127	+ 21	21 501,10
CMC LO VIS	25 kg	95	156	+ 61	9 204,00
LF-5	25 kg	212	241	+ 29	11 568,-
ANCOPOL	25 kg	100	67	- 33	8 844,-
CAUSTIC SODA	25 kg	135	110	- 25	3 090,-
SODA ASH	50 kg	35	56	+ 21	1 036,-
DRILLING DETERGENT	200 1.	18	0	- 18	-
BARITE	M/T	241	263	+ 22	35 242,-
AL.STEARATE	25 kg	<u>-</u>	11	· <u>-</u>	80,-
SOD.BICARBONATE	50 kg		6	_	115,50
XC POLYMER	50 lbs		6	_	1 992,-
		·			
	•				

COST/DAY

US \$ 10 505,3 TOTAL COST FOR INTERVAL

US \$ 126 040,51

COST/Mt.

US \$

139,30 PROG. COST FOR INTERVAL

US \$ 108 817,10

ENGR. COST

COST VARIANCE FOR INTERVAL + US \$

17 223,41

WELL NO. 31/2-8

WAIENIAL	. CONS	OWP II	ON &		MINALI			
12 1/4 HOLI	E DRILLED	TO 2743	Meters	9 5/8"	CASIN	G SET AT	2732	Meters ∑ee x
ACTUAL AMOUN	IT OF HOLE	DRILLED	998	Meters	DA	AYS ON INT	ERVAL	18
DRILLING FLUID	SYSTEM	SEAWATE	R/DRISPA	AC (KCl/	POLYMER	from pre		section itially)
MATER	IAL	UNIT SIZ	E PRO	ıG. I	JSED	VARIANCE	±	COST
BARITE		M/T	156	5	109	- 47	14	606,-
DRISPAC RE	G.	50 lb	s 95	5	108	+ 13	18	284,40
CMC LO VIS		25 kg	4 ()	111	+ 71	6	549,-
LF 5		25 kg	78	3	202	+ 124	9	696,-
CAUSTIC SO	DA	25 kg	109)	81	- 28	1	539 ,-
SODA ASH		50 kg		6	20	+ 14		370,-
SOD.BICARB	ONATE	50 kg	(o	11	+ 11		211,75
MICA C		25 kg		0	3	+ 3		51,30
BENTONITE		50 kg	342	2	0	-342		_
LIGNOSULPH	ONATE	25 kg	27:	2	0	-272		<u>-</u>
XC POLYMER		50 lb	s 23	3	0	- 23		
DRILLING D	ETERGENT	200 1.	10	5	0	- 16		_
FREE PIPE		200 1.		o	8	+ 8	6	360,-
		٠						
	<u></u>					Γ		
COST/DAY	US \$ 3	203,75	TOTAL CO	ST FOR IN	TERVAL	US \$	57 6	67,45
COST/Mt.	US \$	57,78	PROG. CO	ST FOR IN	TERVAL	us \$	69 2	41,30
ENGR. COST			COST VAR	IIANCE FOR	R INTERVA	L - US \$	11 5	73,85

OPERATOR A/S NORSKE SHELL

WELL NO. 31/2-8

MATERIAL CONSUMPTION & COST ANALYSIS

8 ½" HOL	E DRILLED	то 3375	Meters	CASI	NG SET AT	Meters Feet		
ACTUAL AMOUN	ACTUAL AMOUNT OF HOLE DRILLED 632 Meters Meters DAYS ON INTERVAL 13							
DRILLING FLUID	SYSTEM	SEAWATE	R/DRISPAC					
MATER	RIAL	UNIT SIZE	PROG.	USED	VARIANCE ±	COST		
BARITE		M/T	95	46	- 49	US \$ 6 164,-		
BENTONITE		50 kg	235	87	- 148	1 539,90		
LIGNOSULPH	HONATE	25 kg	175	55	- 120	946,-		
DRISPAC RE	EG.	50 lbs	65	27	- 38	4 571,10		
XC POLYMER	₹	50 lbs	0	8	+ 8	2 656,-		
CMC LO VIS	5	25 kg	99	90	- 9	5 310,-		
LF 5		25 kg	0	97	+ 97	4 656,-		
KCl		50 kg	0	16	+ 16	286,10		
CAUSTIC SO	DDA	25 kg	75	43	- 32	817,-		
SODA ASH		50 kg	5	5	0	92,50		
DRILLING I	DETERGENT	200 1.	10	0	- 10			
			!					
			!					
	_							
•		•						
COST/DAY	US \$ 2	079,92 TC	TAL COST FC	R INTERVAL	US \$ 2	7 038,90		
COST/Mt.	US \$	42,78 PR	OG. COST FO	R INTERVAL	US \$ 4	1 762,50		
ENGR. COST		cc	ST VARIANCE	FOR INTERV	AL -US \$ 1	4 723,60		
A service	L							

OPERATOR A/S NORSKE SHELL

WELL NO. 31/2-8

TOTAL CONSUMPTION & COST ANALYSIS

TOTAL DEPTH	3375	Meters	TOTAL HOLE DRILLED	3004,50	Meters
TOTAL DAYS	52				

MATERIAL	UNIT SIZE	PROG.	USED	VARIANCE ±	COST
BARITE	M/T	492	815	+ 323	109 210,-
BENTONITE	M/T	65	38	- 27	12 464,-
CAUSTIC SODA	25 kg	388	323	- 65	6 137,-
DRISPAC REG.	50 lbs	266	321	+ 55	54 345,30
CMC LO VIS	25 kg	234	357	+ 123	21_063,-
LF 5	25 kg	333	540	+ 207	25 920,-
SODA ASH	50 kg	57	118	+ 61	2 183,-
SOD.BICARBONATE	50 kg	0	17	+ 17	327,25
BENTONITE	50 kg	577	87	- 490	1 539,90
LIGNOSUPHONATE	25 kg	447	55	- 392	946,-
XC POLYMER	50 lbs	23	42	+ 19	13 944,-
DRILLING DETERGENT	200 1.	44	00	- 44	-
LIME	25 kg	6	8	+ 2	40,-
CMC HIVIS	25 kg	0	121	+ 121	7 381,-
KCl (Brine)	bbls	0	990	-	15 304,41
KCl	50 kg	1122	1081	- 41	19 349,90
ANCOPOL	25 kg	100	67	- 33	8 844,-
AL.STEARATE	25 kg	0	1	+ 1	80,-
FREE PIPE	200 1.	0	8	+ 8	6 360,-
MICA C	25 kg	0	3	+ 3	51,30

COST/DAY

US \$ 5 874,8 TOTAL COST FOR INTERVAL

US \$ 305 490,06

COST/Mt

US \$ 10,17

PROG. COST FOR INTERVAL

US \$ 244 749,40

ENGR. COST

COST VARIANCE FOR INTERVAL + US \$ 60 740,66

ANCHOR DRILLING FLOIDS AS	
CIONANATO CIOC	

Drilling Fluid & Material Consumption Report

SPUD MUD/ GEL/ SEAWATER/ KCL/POLYMER IUD SYSTEM

ATKINSON/BLANCHARD/WERSLAND ENGINEERS

NORTH SEA NORMAY

AREA R.G.

A/S NORSKE SHELL

31/2-8

WELL NAME

OPERATOR

BORGINY DOLPHIN

10.1 W. 156/12 SIJED 35 4 $\widetilde{\mathfrak{o}}$ **W**CO ALISABATE ASH PRICARBOX ∞ ω 9 kaos MATERIALS ADDED TO CONTROL PROPERTIES ω S φ ø ∞ αģ α 11465 PAUSTIFC 9 16 φ ω ∞ σ 12 5199 330 099 990 KCI SXS 100 100 KCI TE-2 8 132 40 54 DENNER SINH POLYMERS SINOT 40 33 121 77 প্ৰ 300 PAQS DAQ 238 28 28 120 ∞ 35 26 2 THINNERS MON SACK MATERIALS BENIONTIE BARITE 120 BENTOWITE WAS THE 120 BULK MATERIALS 16 ~ S 2 38 I)W BARITE 519 19 9 8 92 49 20 3 73 TIME ONW ESTIMATED DAILY MUD VOLUMES 300 1360 9 1400 1000 550 900 1120 110 1325 1000 9760 95 SUAFSES SUAFACE 360_ 340 200 122 377 170 180 g 1920 9 802532501 803544608 *300 *220 (1550 9 1190 3890 570 * 9 23.6 1 15.6 ESTIMATED TOTALS 13.6 5 19.6 6 20.6 7 21.6 8 22.6 10 24.6 11 25.6 1982 12 26.6 13 27.6. 14 28.6 DATE 2 16.6 3 17.6 FORWARD REMARKS Day. 4

** Disp. by casing.

Dump_valve.

ANCHOR DRILLING FLUIDS AS
OSLO - STAVANGER

UD SYSTEM KCL - POLYMER/ SEAWATER/ DRISPAC irilling Fluid & Material Consumption Report

WELL NAME

AREA NORTH SEA NORWAY RIG. BORGNY DOLPHIN ATKINSON/BLANCHARD/WERSLAND A/S NORSKE SHELL 31/2-8 ENGINEERS OPERATOR __

à È	DATE	ESTI	ESTIMATED DAILY		BULK		SACK				MATERIA	ILS ADDE	MATERIALS ADDED TO CONTROL PROPERTIES	ROL PRC	PERTIES					
·	_	80	3	\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-	3/	↓'	HH /	THINNERS	1	Ю	POLYMERS	8			1	11/0	1	IE		
	982	2059E53 52 50.55F4 0.2 20.50 50 50 50 50 50 50 50 50 50 50 50 50 5	SSSO1 WUJOY BOUM	_ 8	WOINJA WINJA	TITE	TYONER	200	STSPAC SEGNACION SEGNACION	15/2 15/55	SINH	A X OLYMA A X OLYMA	ZXZ KCI	PPIS	TTSUKO	55 年 12 12 12 12 12 12 12 12 12 12 12 12 12	TA	MICA	CACIS	CaCI ₂
15 29	9.	142		26				/				-								σ
16 30	9.6		486	10				12	<u></u>	9	•	18	153		9					17
12	1.7	191	380	29				14		24		27	200	,,	27 6					9
18 2	2.7	614	515	45				28		33	4	64	350	7	19 10					11
19 3	3.7_	251	320	19		-		1		25	7		130		21-4		+			13
20 4	1.7	215		2		-						_			4			-	_	-3-
21.5	5.7	10.0		10		_							06		1					
22 6	5.7 365	150	300						5	10		10			7					
23 7	7.7		400					23		49		40	42	, 7	28					
24 8	3.7 13	380	300	21				17	5 2	22		23			17 10	4				
6 62	9.7	1365	1000	30				18	8	30		29			8			3		
26 10	27	89	100	20				1	- H							7				:
27 11	1.7	20	- 67			-			3						_			_		i
28 12.	2,7		55			_		•]	7			6			-		-			
F ORWARD	ARD 3890	1920	9760	519	38 12	120		120		65 121	1 28	3 132	100	990 11	114 6	65 6 8			26	12
ESTIMATED TOTALS	TED 4268	5437	13683	731	38 12	20		 260	0 267	57 121	1 34	352	1065	990 254	54 113	3 17 8			56	67
REMARKS	KS																			

	OSIO - STAVANGEB
ビエレ)
d L	

	r
_	

31/2-8

NORTH SEA NORWAY

	WELL NAME	0-7/10	ABEA INCIDENT DESCRIPTION
ling Fluid & Material Consumption Report		NORSKE SHELL	SHELL RIG BORGNY DOLPHIN
SYSIEM SEAWATER/DRISPAC	ENGINEERS	ENGINEERS ATKINSON/BLANCHARD/WERSLAND	SLAND

JO SYSTEM	מ	SEP	WATER/	SEAWATER/DRISPAC	שׁר בי בי בי	100							_ _ _	OPERATOR ENGINEERS	OR ERS	ATKIN	SON/B	LANCH	IARD/V	ATKINSON/BLANCHARD/WERSLAND	Q.			
Jy DATE		ESTIN	ESTIMATED DAILY	١,٧	BULK	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	SACK						Α×	TERIALS	ADDED	MATERIALS ADDED TO CONTROL PROPERTIES	Or PROF	PER TIES						
o		87	コート		⊋	IIALS .w	MATERI / E	ALS		THINNERS			POLY	POLYMERS						ZT/THERS	(0	3		ļ
1982	30×1405	SUPPLACE SUPPLACE		, w		BARITE	TWOINE	MON				TANK CON MAN CONTRACT SOLVERED TO BE CONTRACT SOLVERED TO SOLVERED	SIAC	SIN TO	5-37	SPIZ KCI SXZ KCI	STOC	STRUK AGOS SOS	ASH	ACAPA FICAPA FINE FINE FINE FINE FINE FINE FINE FINE	PIPE ALIENAN STEANN	MAN	CaCIZ	-07
9 13.7		85	177						-		φ •				H			1		7				
0 14.7		96	154	7			<u> </u>								16		_			80				
1 15.7		80	200	9							7				14			7						- :
2 16.7		50	137	3							9				6			9						į
3 17.7		09	170	4							9				18			9						
4 18.7		125	210	2							9				18			7						_
5. 19.7		20						1			-													į
6 20.7				2							-													İ
7 21.7		40		8							-				7			İ						_
8 22.7		40		3																				:
9 23.7		635		5																				:
0 24.7				N O N	ы	USE	O S																	-
1 25.7			89	4				45			2	18		٣	8									· !
2 26.7		140	24	1							4	21		-	7				Ж					
FORWARD	4268	5437	13683	731	38						260	267	121	34	352	1065 9	990 2	254 113	3 17	80	-	m	56.	67
LSTIMATED TOTALS	4268	6802	14844	784	38			45			303	306	121	38	458	1065 9	990 28	280 116	6 17	& — &			56	- 67

HE LIAHIKS

E	Î 0
	OSF

Fluid & Material C SEAMAT UD SYSTEM __

	TELINA FLOTOS TO						
– STAVANGER	~				WELL	31/2-8	AREA NORTH SEA NOIWAY
Consumption Report	ion Report				OPERATOR	A/S NORSKE SHELL	RIG. BORGNY DOLPHIN
ATER/DRISPAC	C				ENGINEERS	ATKINSON/BLANCHARD/WERSLAND	WERSLAND
ATED DAILY VOLUMES	BULK MATERIALS	SACK MATERIALS		2	ATERIALS ADDED 1	MATERIALS ADDED TO CONTROL PROPERTIES	

	 : ;	CV2		į		İ	-	-		-	-	- +	-	=	. —		.9	ای_
		CACIS CACIS															56	56
		MG C															3	3
	AT	LANE PRINTERS															-	-
	RS	AUI A															80	8
	THE STATE OF	SOB HE PER PER PER PER PER PER PER PER PER PE											\				8	8
		BICADE															17	17
IES							İ				-						116	118
OPERT	3	TTZUKO	9	4	5	3	9	2	7								280	323
ROL PF		SIPP KCI SXS															990	990
O CON		SXS VCI	16														990	1081
MATERIALS ADDED TO CONTROL PROPERTIES		5-,-	•	4	4	6	19	27				1					458 1	
IALS A	ν γ	XC STA	4														38 45	42 540
MATER	7	1 74																
	P)	1 4071															5 121	7 121
	İ	20		7	5					14					l		306	357
		DAG STA	7	2				4	7						1		303	321
	THINNERS																	
	Ŧ																	
X IALS	37	MOM		10													45	55
SACK	3/	WQING8		78	Ì						6							87
	Γ,	BARITE																
BULK MATERIALS	-	W T W															38	38
2		ATINA M	3	2			7		7	2					<u> </u>			
SS SS	13	NON WOON			10												784	815
ESTIMATED DAILY MUD VOLUMES	13	77.	206	20	30	30	27	227	108			56					14844	15548
ESTIM/ MUD	S	355015		44	40	76				271								1
	80	304447S 2018283								7							3 6802	3 7233
ļ 	_	307															4268	4268
DATE		1982	27.7	28.7	28.7	30.7	31.7	8	2.8	3.8	4.8	5.8	1				LOHWARD	LSTIMATED
<u>}</u> 2		_ * .	m	* <u>4</u>	5	46	47	00 20 24 180	6	- IO	٠.٠	52	! !		-i	.	Š	101

HELLANKS

W. P. C.

Drilling Mud Properties Record
SPUD MUD/GEL/SEAWATER/ KCL/POLYMER

MUD SYSTEM __

AREANORWAY, NORTH SEA RIG. BORGNY DOLPHIN ENGINEERS CHRIS ATKINSON NORSKE SHELL WELL NAME 31/2-8 OPERATOR __

y Say	DATE	ОЕРТН	MUD PROPERTIES
2			VISCOSITY /GELS/ 3 / / Filtrate Analysis / RETORT / \approx
		FEET 7	10 % NAE 35 NOS SO IL NO SO IL NO SO OIL NO SO
	1982		() () () () () () () () () ()
	15.6		1.07 100 ·
7	16.6	479	1.07 100
	17.6	479	1.07 100
4	18.6		1.06 50
r.	19.6	839	1.08 52
9	20.6	575 1	.10 45
7	21.6	821	1.09 41
σ.	22.6	840 1	.21 42
6	23.6		2
10	24.6	840 1	.85 45
7	25.6	840	KGL/ POLYMER S Y S T
12	26.6	840	2 4.5 1 10.0 79 100 1
13	27.6	840 1	.26 52 34.5 22 25 2 4.5 1 10.0 79 100 1
14	28.6	938 1	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
REA	REMARKS		

Drilling Mud Properties Record

MUD SYSTEM KCL - POLYMERS/ SEAWATER/DRISPAC

WELL NAME 31/2-8

AREANORWAY NORTH SEA

OPERATOR NORSKE SHELL RIG. BORGNY DOLPHIN ENGINEERS C. BLANCHARD/WERSLAND/ C. ATKINSON

عُ ا	DATE -	C C																				
S S			:	•		1						MUD PR	PROPERTIES	,								-
- #1950 <u> </u>				7		VISCOSITY	<u></u>	1	/ 53 /ST			7	Filtrate Analysis	SIS	RETORT		186		78	\	_	
··· ·· <u>·</u> .		FEET O		D DS VIIS	\$03 N.P	~ SOS 17	11 65 001/4		SPUZE 344	Spu Zo OHILA	s,00	Crapm	maa ++ E	110%	S01705 %	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	OV. OV. OV. OV. OV. OV. OV. OV.	88/# H3WA76	Z 78/*	¥	OPERATION REMARKS	ARKS
	1982		N _{3O}		•		41 1		0/0	_		,			,		٥٥	\				
15	5 29.6	1063	1.29	50 3.	3 21	1 23	4	2 4.2	1	1	1 70K	400	1.0	13	3 T.R.	۲. 40	38					; · · · · · · · · · · · · · · · · · · ·
16	30.6	1228	1.32	55 46	6.5 36	6 21	3	3 4.8	1	1	0.565K	720	1.0	13	-#	14	40					
11	1.7	1427	1.32	59 40	0 31	1 18		4 6.6	1	10	- 5		9.0	13		20	41					· - • · · · · · · · · · · · · · · ·
18	1 2.7	1610	1.36	54 38	8 36	91 9	37	7 6.0	-	1	0 70K		0 3	14	T.R		41					
19	3.7	1745	1.36	53 35	5.5 25	5 21	2 10	6.1	-	1(0 71K		0.4	15	⊸ 1	24	38					
20	4.7	1745	1.37	61 37	7.5 30	0 15	2 10	5.6		1	0 71K	220	0.4	14		23 ·	38					
2	5.7	1745	1.4	54 37	7 37	7 31	18	3 6.6	1	1	0 79K		0.3	14		24	43					
22	6.7	1745	1.4	46 27	7.5 22	2 12	-3	3 6.2	-	1(0 78K	220	0.3	13	0.5	5 22	42					
23	7.7	1745	1.22	59 39	9 28	8 22	7 3	3 4.0	-	<u>-</u>	0 49K	480	0.5	12		12.	-Cl					:
24	8.7	1745	1.18	69 47	7.5 28	3 39	5	5 4.2	- -	-	1 26K	240	1.4	8	_	2						
25	9.7	1750	1.20	60 41	1 27	7 28	m	5 4.2	-	7	.536K	200	6.0	8		2.6	2					-
. 26	10.7	1842	1.21	48 35	5 23	3 24	2	3 4.2	-	+	1.139K	160	1.2	6	1/4	7						
27	11.7	1870	1.21	47 34	5 2	3 23	20	2 4.2	-		.0 38K	170 1		6	1/2	7	T.V.					
78	12.7	1896	1.21	47 32	.5 2	2 21	<u>, </u>	2 4.0	-	1	.23	7.5K 150	1.05	9	1/4	7.	5					
H.	REMARKS																					-

MUD SYSTEM SEAWATER/DRISPAC Drilling Mud Properties Record

WELL NAME 31/2-8

AREA NORWAY NORTH SEA

OPERATOR NORSKE SHELLL

ENGINEERS C. ATKINSON/C. BLANCHARD

Day DATE	DEPTH											MUD	MUD PROPERTIES	TIES							<u> </u>		
					VISC	VISCOSITY		/GELS	\$,0,				Filtrate	Filtrate Analysis		RETORT		72					
	FEET OMETERS X		S DS JS	16/305	sø ₂ A	\$05 A	W bs 001/4	307	OUWOE SSO T	-PU >-	200 AHII	Cropn	maa ++ 6	TW/10	7/0 %	SOLTOS	NVS %	88/* 37/NOT!	** 40.	TBB/# BBWAT	Y		OPERATION REMARKS
1982		DEN.	_		Δ)	۵۱	02/	OIN JA	ວ `	_	* \	×1000/	్రి	\			N ₃₈	04		/			
9 13,7	2106	1.22	21	35	24	22	7 3	4.0			11.033	d3.5K 150	0 0.85	ñ	9.5	40	7						
30 14.7	2173	1.22	20	34	24	20	72	4.0	-	.	11.030K	IK 120	0 0.70	<u>,</u>	9.5	1/4	6						
31 15.7	23	1.22	50	33.5	24	19	22	4.0	-	`	10.926	6K 130	0 0.65	1	10	1/4	9						
32 16.7	2416	1,23	50	33.5	24	19	2/2	4		,	10,825	5K 120		1	10	1/4	σ						
33 17.7	2571	1.23	51	35	25	20		3.9		•	10.822	15	0	1	10.5	5 1/4		1					
4 18.7	2743	1.24	22	35	26	18	3/3	3.8	-	`	10.821	.821.5K100	0 0.65	55 1	-	-4~	8						
5 19.7	2743	1.24	50	35	26	18	7 3	3.8	-	<u> </u>	10.821	821.5K100	0	60	17	-1~	∞					i	
6 20.7	2743	1.24	50	35	26	18	2 3	3.8	Į.		10.821	821.5K100	09.0	50 1	11	-#74	∞			:			
37 21.7	2743	1.24	52	35.5	26	19	2 3	3.8		<u> </u>	10.821	821.5K100	0	.55	=	-47	7.5						
38 22.7	2743	1.24	20	35.5	26	19	23/3	3.9	—	•	10.721	1K 100	0	50 1	-	-40	7.5						
9 23.7	2743	1.25	20	35.5	26	19	2 4	4.2		•	10.722	2K 100	9 -	-	7	T.R.	.0						
40 24.7	2743	1.24	49	35.5	26	19	2 3	4.2	-		10.822	2K 100		-7	-	T.R	T.R.B.0						
1 25.7	2761	1.24	53	40	30	20	W 4	4.0		16	11.218	300 300	0.5	·	- =	H R	8.0					1	
42 26.7	2867	1.24	52	40	30	20	74	4.0	1 1	5	11.019	9.0 K220		کاک 1	12	.5	8.5						
REMARKS																							

// warr

Drilling Mud Properties Record

SEAWATER/ DRISPAC/ LIGNOSULPHONATE MUD SYSTEM ___

WELL NAME 31/2-8

OPERATOR NORSKE SHELL

AREA NORWAY NORTH SEA...

RIG BORGNY DOLPSHIN ENGINEERS C. BLANCHARD/ C. ATKINSON

																							İ
Day DATE	IE DEPTH										MUE	MUD PROPERTIES	ERTIES										
7	FEET O METERS AS	S DS DS NATIONED	16,385	\$00 N W	VISCOSITY SQ2 V Q	VTI8		~ 10E Sc	70020	200 aH 1 H	maa lo		Filtrate Analysis	7/0 %	RETORT 801/08 %	- 5/V bS %	3TINOTN3C	****	788/# 43WA 700	70.	**	OPERATION REMARKS	
43 27.	7 2964	1.24 53	38	27	22	2	J · ·	-	14	10.9	19K 2.	230	m 9	12	.5 .5	\	5	-	 	-	-		
44 28.	7 3019	1.24 54	8	20	50	5 5	3.8	-	14	10.8	20K 2	240 .5	5 1	12	.5	25 9.	0.						
45 29.	7 3060	1.24 55	42.	5 30	25	4 4	3.9	_	14	10.9	18K 2%	220 .8	44	12		25 9.	9.0						
46 30.	7 3080	1.24 53	35.5	5 26	19	2	4.0	-	14	10.8	19K 2;	220 .8	4 8	12	•	25 9.	Ω.						
47 31.	7 3198	1.24 53	37	27	20	2 4	3.9	-	12.5	10.7	19K 16	160 .8	4 6	12		25 9.	9						1
, ::		1.24 52	38.5	5 28	21		4.0	1	13	10.9	18K 12	120 .7	1	T.R.13	•	5 10.0	0						
49 2.	8 3360	1.24 54	36	27	18		4.2	-	13	11,0	19K 17	120	.45 9 T	. R. 12	77	25 8.	0.8						
3.	8	1.24 50	26	26	17	ى 5	4.0		13	10.8	19K 1;	120		T.R.13		25 8.	0						1
51 4	.8 3375	1.24 43	31	24	14	2 2	4.5	-	14	10.5	19K 1	120	2 9	, R, 13		25 8.	0						۱
52 5.	8 3375	1.24 62	35	35	27	4 12	4.4		14	10.7	12K 1;	120	7	T.R.13	.5 T.R	.5	0.						i
53 6.	8																						
54 7.	æ																						
55 8.	æ												}										1
<u></u>	8											,				,							
3	S																						:
// sperie																							

METERS 18 DEPTH 3000 1000 ANCHOR DRILLING FLUIDS AS 5 20 30 6 DAYS FROM SPUD 60 70 80 8 \$ 12 8 0 × 1000 COST 30/20/33/85/ CASING PLAN OPERATOR: _ CONTRACT PPG 🗆 DENSITY OR: Dolphin Services RIG: Borgny Dolphin SGE Norske Shell 1,50 API HTHP -FILTRATE ٠<u>٠</u> . PAGE NO: 44 RHEOLOGY <u>30 40</u>