

Copy No.8

RESEARCH CENTRE

SUNBURY - ON - THAMES

MIDDLESEX

EXPLORATION AND PRODUCTION DIVISION

GCB/19/83

FEBRUARY 1983

GEOCHEMISTRY BRANCH

GEOCHEMICAL ANALYSIS OF SEDIMENTS FROM THE WELL 6507/10-1, HALTENBANKEN AREA, OFFSHORE NORWAY

By

R.F. Woodhouse and H.E. Ward

Work by:

Approved by:

R.F. Woodhouse

S.W. Richardson

P.M. Harrington

C.N. Maile

Analytical Division

D.J. Batten

Geo-optics Ltd.

This document is the property of THE BRITISH PETROLEUM COMPANY p.l.c. and is classified as CONFIDENTIAL. The contents should be disclosed only to those directly concerned with the project and must not be reproduced in whole or part without prior consent in writing of BP Research Centre.

Memorandum

To Dr A. M. Spencer
BP Petroleum Development, Norway

From Dr H.A. Bockmeulen
Geochemistry Branch, Sunbury

Ourref GCB/19/83

Date 15th February 1983

Your ref

Subject GEOCHEMICAL ANALYSIS OF SEDIMENTS FROM THE WELL 6507/10-1

Please find attached Helen Ward's and Rosemary Woodhouse's interpretation of the geochemical data.

We are still not satisfied with the quality and results of the core extraction work and have therefore decided not to include them in the report in order to get the sediment data to you. The problem is being sure whether or not the hydrocarbons extracted from the core represent migrated oil or not. We will forward our interpretation as soon as we can.

I hope this solution is acceptable to you.

Regards.

H.A. BOCKMEULEN

Ext 8249

DATA BANK SUMMARY SHEET

Coordinates	of	area	and/or	wells	described.

65°13'10.78"N 7°14'01.01"E

Country/Area:

OFFSHORE NORWAY (NORTH OF 62°)

Basin(s):

HALTENBANKEN

Stratigraphic range covered:

JURASSIC - TERTIARY

Report does/XXXXXXcontain significant well data.

Keywords:

CONTENTS

		Page No
1.	INTRODUCTION	1
2.	RESULTS AND DISCUSSION	2
	a) Maturity	2
	b) Source potential	
3.	CONCLUSIONS	
TAE	BLES 1-8	
FIG	URES 1-11	
ENC	LOSURE 1	

1. INTRODUCTION

The well 6507/10-1 is situated offshore Norway (Haltenbanken area) at 65° 13' 10.78"N 7° 14' 01.01"E. The sediments penetrated range in age from Triassic to Tertiary (TD 3698m). They comprise mudstones and siltstones, which are interbedded with sandstones and coals within the Lower Jurassic interval.

Geochemical analyses were undertaken to determine the maturity and source potential of these sediments. Sidewall cores and 30m cuttings composites were analysed, with the depths quoted in the text representing the top of the interval.

2. RESULTS AND DISCUSSION

a) Maturity

Measurement of vitrinite reflectance shows an increase in maturity with depth in the well. Those values considered reliable were used for statistical correlation. The Oil Generation Threshold ($R_o = 0.55\%$) is predicted in the depth range 3674 \pm 341m which places it around T.D. in this well (fig.1). Spore colours observed under transmitted and ultraviolet light also suggest the succession penetrated is essentially immature.

Eleven samples of Jurassic age were selected for soluble extract studies. The generation indices in all instances strongly suggest no significant hydrocarbon generation has yet commenced. Although the variation in the CPI apparently indicates the Kimmeridge and Heather Fm sediments are more mature than the underlying Coal Unit, this is due to the greater contribution of terrestrial organic matter in the latter sediments which most strongly influences the CPI.

Similarly conflicting data were obtained from GC-MS studies. Data from Coal Unit sediments suggest these are mature for hydrocarbon generation but the sterane and triterpane interpretations were hampered by the co-elution of a component beneath the C_{39} sterane peak and the ratios calculated may not be reliable. It is possible that bitumen has been analysed within some of the shallower samples, which may account for the anomalously high maturity levels indicated (Table 8).

On the basis of the data obtained, it is concluded that the Oil Generation Threshold lies at the base of this well. The lower Coal Unit sediments may have just commenced generation but the rest of the section penetrated is still immature.

b) Source Potential

Rock-Eval pyrolysis data indicate insignificant source potential in the Cretaceous and Tertiary sediments (1620-2780m). Hydrocarbon yields range from 0-0.7kg/tonne (average = 0.3kg/tonne). Within the Kimmeridgian and top-Heather Formations (2785-2825m) the potential yields are very high, five of the seven samples pyrolysed yielding 21.0 to 67.9kg/tonne of hydrocarbons. These sediments are extremely rich in organic material (TOC = 6.2 - 12.1%wt) which is shown to be essentially oil prone by visual kerogen descriptions and Pyrolysis Gas Chromatography (PGC).

Siltstones and shales picked from the Mid to Lower Jurassic intervals give variable pyrolysis yields, ranging from 0-35.8 kg/tonne. There are several apparently rich source intervals within this section which have moderate to good organic richness (TOC = 1.9 - 7.9 %wt) and are oil to oil/subordinate gas prone. These potential source horizons are of unknown thickness and lateral extent and may even represent cavings from the Kimmeridge Clay Formation.

As would be expected, the Jurassic Coal Unit has extremely good source potential (P_2 = 240 - 246 kg/tonne) and is highly rich in organic matter (TOC = 10.9 - 61.2 %wt). The kerogen is predominantly gas prone (GOGI = 0.34 - 0.55) although source potential to generate liquid hydrocarbons may be expected.

Examination of the organic material shows the environmental changes within the sediments of 6507/10-1; from the marine Cretaceous interval to the terrestrially derived Jurassic Coal Unit. The Lower to Middle Jurassic interbedded sandstone, siltstone and mudstone sequence reflects the alternating terrigenous and marine influxes which accompanied the regression. Carbon isotope values range from $\delta^{13}C=-29.8^{\circ}/oo$ to $-24.4^{\circ}/oo$, the variations again showing changes from terrestrial to marine environments of deposition.

The n-alkane distributions of the coal unit samples (fig.3) clearly show the terrestrial nature of the organic material and this is also evident from GCMS data (figs. 6-11).

The presence of triterpane X in sediments at 2810m and 3290m (figs 6 + 8) could be a good oil-source correlation factor in the future.

3. CONCLUSIONS

- 1. Maturity data for this well indicate the Oil Generation Threshold lies at the base of the drilled section.
- 2. The Kimmeridge and top Heather Formations have good to excellent oil source potential.
- 3. Several intervals within the lower to middle Jurassic sandstonesiltstone section show moderate to very good source potential for oil and oil/subordinate gas. The thickness and lateral extent of these intervals is unknown.
- 4. The Jurassic coal unit shows excellent source potential, predominantly for gas. Minor oil generation may have commenced at the base of the well.
- 5. The organic material in the sediments reflects the change in environment of deposition from marine (Cretaceous) to terrestrial (Jurassic Coal Unit)

TABLE 1

VITRINITE REFLECTANCE DATA

WELL: 6507/10-1

LOCATION: OFFSHORE NORWAY

DEPTH (m)	REFLECTANCE VALUES(%Ro)	COMMENTS
1500	.37(22)	VL/MOD BS/VST+PAR SUB I - Y/O(SPORES)
1590	.43(12)	TR PHY/F BW+OCC VW+I PAR - Y/O(SPORES)
1650	.31(17)	LIGHT BS/VL PHY/PAR V - Y-LTO(SPORES)
1740	.32(20)	BS/TR V+I PAR+W - Y+YO(SPORES)
1830	.34(20)	L-MOD BS/VL PHY/V PAR+W PAR+TR I - Y+YO(SPORES)
2010	.22(3).41(8)	PL SML BW+LIGHT BS/TR I PAR+V PAR+W - Y/O(SPORES)
2040	.3(1)	BW+LIGHT BS/BAR TWO I PAR+ONE V - Y/O(SPORES)
2130	0(0)	NDP/GN BW+BS/TR PHY/SML GN PAR/I+RM - Y/O(SPORES)
2220	.42(20)	
2310	.36(9)	BW+BS/MOD PHY/ALMOST WH PAR TR V PAR - Y+YO(SPORES
2400	.42(11)	LIGHT BS+W/MOD PHY/MAIN I+R PAR/TR V PAR -Y+YO)SPO
2550	.36(7).5(6)	BW+MOD BS/MOD PHY/I+R PAR/TR V PAR - Y+YO(SPORES)
2550	.64(1)	BW+MOD BS/MOD PHY/I+R PAR/TR V PAR - Y+YO(SPORES)
2610	.66(2).48(7)	L-MOD PHY/SML GN PAR I+RM/TR V PAR - Y+YO (SPORES)
2700	.6(13).47(6)	BW/MOD PHY/I+R PAR+SUB V PAR - Y+Y/O(SPORES)
2700	.7(1)	BW/MOD PHY/I+R PAR+SUB V PAR - Y+Y/O(SPORES)
2871	.44(20) Healier	MOD BS+BW/MOD PHY/R+I PAR/TR V PAR - Y/O+LTO(SPORE
2992	.44(7) Drakes	TR PHY/F R+TRUE V PAR - Y/O(SPORES)
3037	.41(13).59(7)	_OCC BW+BS/L-MOD PHY/R PAR+TR V PAR - Y-LTO(SPORES)
3149	.43(19).63(1)	BW+BS/L-MOD PHY/I+R PAR+TR V - Y/O+LTO(SPORES)
3250	.53(20) (ook	OCC BW/LOW PHY/I+R PAR+SUB VW+PAR - Y/O(SPORES)
3322	.55(20)	PL BW/BS/MOD PHY/LOT R PAR/I/TR V PAR-Y/YO+LTO(SPO
3450	.55(20) (C)	BW/MOD PHY/VW+VST+LGN FR - LTO(SPORES)
3506	.53(20)	V+LIPTINITE S I - LTO(SPORES+CUTICLES)
3603	.57(3)	MOD PHY/I+R PAR/F V PAR - LTO(SPORES+HC SP)
3667	.55(20)	F BW/MOD CONT OF INCL COAL FR - LTO(SPORES+HC SP)

FIGURES IN PARENTHESES INDICATE NUMBER OF READINGS SEE LIST OF ABBREVIATIONS OVERLEAF

TABLE 1A

VITRINITE TABLE ABBREVIATIONS

FR GN I	IS - ANISOTROPIC BITUMEN STAINING R - VIRTUALLY BARREN RB - CARBARGILTTE GS - CUTTINGS A - DRILLING MUD ADDITIVE FEW FRAGMENTS I - GNARLED INERTINITE SN - IGNEOUS TRACES LOW ORGANIC CONTENT OW - LOWEST REFLECTANCES MEASURED MODERATE ORGANIC CONTENT	FL G GRAN INST IRON LGN	- FLUORESCENCE - GOOD 1 - GRANULARITY - INTERSTITIAL 1 - IRON OXIDES - LIGNITE - MOSTLY
PL R RC	D - MODERATE ORGANIC CONTENT O - NO TRUE VITRINITE C - OCCASIONAL - POOR - PLENTIFUL-PLENTY - REWORKED O - REFLECTANCE MEASUREMENT ICH - RICH-HIGH ORGANIC CONTENT	RM RES	- PUSSIBLY - REWORKED MATERIAL - RESIN
SC SL SF ST TE VL V/ W	CCH - RICH-HIGH ORGANIC CONTENT C - SCRUFFY T - SILTSTONE C - SPECKS C - STRUCTURE C - TURBO-DRILLED CL - TELINITIC C - V.LOW ORGANIC CONTENT AR - VARIABLE (HIGH) RO C - WISPS-WISPY C - ALLOCTHONOUS C - BLEBS	SH SML SUB STR TR V VST WH	- SHALE - SMALL - SUBORDINATE - STRONGLY - TRACE - VITRINITE - VITRINITE WISPS - VITRINITE STRINGERS - WHOLLY - EQUAL PROPORTIONS
? BL	- QUESTIONABLE - BLEBS	PHY	- PHYTOCLASTS (CONTENT)
(9	SPORE FLUORESCENCE COLOURS UNDER	u.v.	LIGHT)
0 L1	- GREEN - ORANGE - LIGHT - DEEP	R - M -	

TABLE 2
VISUAL KEROGEN DESCRIPTIONS

WELL: 6507/10-1

LOCATION: OFFSHORE NORWAY

DEPTH(m)	SPORE COLOUR	ESTIMATED SOURCE POT	ENTIAL
162^ 1770	2	MOD OIL MOD-GOOD OIL	Tert
2010	2-2/3	NONE	
2220	2-2/3	NONE	
2310	2/3	NONE	
2550	2-2/3	POOR OIL/GAS	Cret
2700	3	NONE-POOR OIL/GAS	;
2730	3	NONE-POOR OIL/GAS	
2900	n.d.	NONE	Brew ?
3016	3	MOD GAS	Drako
3149	3	GOOD OIL/SUB GAS	
3250	3	NONE	2 1
3278	3	GOOD GAS	(ook
3279	3 Service 18	GOOD GAS	
3280	3-3/4	GOOD GAS	

														7	-/	4	6	L	E	ξ		Z	- /	4	,			;									
					1											T			3280	3279	3278	3250		21/2	2025	2900	2730	2700	2250	2010	N. C. C.	700			1225		SAM
H	_	H	+	+	+	-			+	+	-			-	+	╀	+			SwC	L.,	1		_	_		-	22	12.5	+	4		8	3	Q X	T	SAMPLES ype
		-	+	+	+	_		┞	+	+	\dashv			+	+	+	1	\dashv	67 JMS	SCW.	N M	1	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	∑ 	Swickmall	5			C) SIMI	- 1	i -		2,4	•	7		mount of Organic Matter
		L	\downarrow	1	_			L	1	\downarrow	_		_	Ļ	1	\downarrow	_	_	Large	â	2	V	`	2	3	<u>۰</u>	S S) C			4		Ī		
-	-	╁	+	\dashv	-+	-	_	+	+-	+	-	_	\vdash	+-	+	+	-	-	Ò	<u> </u>	O			5			<u> </u>	0		1	1	4	2	2	0		Trace/present Common MIOSPORES
		I	1	\downarrow	\exists	\Box			1	1				1	1	1	\Box		_	0	L	Ţ	7		0			L	Ţ	-	_	4	4	4			Frequent
-	-	╁	+	+	\dashv	_		╀	+	+	-	,	┝	╀	+	+	\dashv	-	_		╁	+	+	5	O	-	-	H	╁	+	+	+	+	\dashv	O	5 1-2	Abundant
		İ	1	1					#					Ţ	1	1			_		 	1	1										2	2		ω	DINOFLAGELLATE CYSTS AND ACRITARCHS
-	-	╀	+	+	\dashv			+	+	+		_	\vdash	╀	+	\dashv	-	_		-	\vdash	+	+	\dashv	_	-	-	1	X	4	个	۲	\dashv	-1		4 5	AND ACRITARCAS
		ļ	1	1			Γ	1	1	\downarrow			L	T	1							1	7		_			T	1	1	1			Ō		E	TASMANITIDS AND
-	-	+	+	+	-		_	+-	+	+		-	╂-	+	+	+	-			┞	+	+	+	-		-	├	+	+	+	+	\dashv	-	_	-	ν ω	LEIOSPHERES
\vdash	T	+	\dagger						İ				T	İ	İ		_					Ī					L	I	(21	×	<u> </u>				F	
		1	7	1				Ţ	7	7		F	F	$oxed{\Gamma}$	\perp	1			L	Ĺ	\perp	-	\dashv			1	\vdash	+	+	+	+	-		0	0	2 3	FORAM LININGS
-	╁	+	+	+	-	_	\vdash	+	+	\dashv			t	+	+	_	_			\vdash	\dagger	+	_	_				\dagger	\pm	\pm	1					F	
		1	1					Ŀ	1				Ţ	Ţ	1				F		Ţ	7	_				F	T	\downarrow	4	\dashv	_	Ц			23	MEGASPORES
\vdash	+	+	+	4		ļ	+	+	+	-	_	+	+	+	+	\dashv	_	\vdash	-	+	+	+	-	-	O	+	+	t	5	5	+		Н	D	O	_	
		\pm	1	1			Ŀ	İ	1				İ	1							1			_			C			2	1				L]~	OTHER MICROFOSSILS 1
	L	1	4	\dashv	_	_	L	+	_	_	_	ŀ	+	+	4	-		_	┝	\dotplus	+	+	4		-	╀	╀	+	+	+	4		-	-	┝	造	ATUTO MYCDOFOCCII C 2
\vdash	+	+	+	┪			+	+	1			\perp	\pm	\pm	\exists					t	1	1				t	İ	1	\downarrow	\exists	\exists	_		Q		12	OTHER MICROFOSSILS 2, MISCELLANEOUS PHYTOCLASTS
	Ţ	1	1		_		I	I	4			L	Ţ	1	_		_				1	4	_	_	D	-	+	+	+	4	3		L	-	┝	312	
-	+	+	\dashv	\dashv		-	+	+	+	-	-	+	\dagger	+	+		-	ŀ	۲		7	7		2	Ĭ		†	\dagger	1	Í						234-5	CUTICLES
上	İ	1	1				T	1	1			Ţ	ļ	1		_			Ļ	I	Ţ		_			\perp	Ļ				3	$\overline{}$	_	L		15 12	<u> </u>
-	+	+	+	-		-	+	+	+		H	╀	+	+	\dashv		-	\vdash	<u>p</u>	C	5	3	<u>_</u>	2	2	C	א	4	7		٢	_	O	O			OTHER TISSUES
	t	\dagger			_	L	+	\dagger	1			1	1	1						Ĭ			-	Γ	Γ	Т	٦_		1		ı	١.		L	Ļ	34-51	
	Ţ	\downarrow	_			F	Ŧ	4	-		_	+	-	+	-	_	-	\vdash	+	t	5	4	<u> </u>	Q	C	1	+	<u> </u>	3 K		y	3	0	۲	1	123	BROWN 'WOOD'
\vdash	+	+	\dashv	_		╁	+	+	-		-	\dagger	\dagger	+			\vdash		C	1	(2				t	İ	1							Ĺ	15	HUMINITE + VITRINITE
	I	1				T	I	1			Ļ	1	Ţ	1			F	F	Ļ				_	0	Ļ	C)	\downarrow	_	_	-	O	P	D	10	123	BLACK 'WOOD'
\vdash	+	+	-		-	╀	+	+	-	_	\vdash	+	+	+			H	╁	C	7	7	5	<u></u>	-	۲					9				İ	İ	5	VITRINITE + INERTINITE
	İ	1				T	İ					1	1	\exists				I	Ţ	Ţ) ($\overline{\Delta}$	0	1	Ç		Į	_],	2	X	_	P	C		723	BLACK 'WOOD'; REWORKED VITRINITE
-	+	+	_	_	L	+	+	+	-	<u> </u>	-	+	+	\dashv		-	\vdash	+	╁	+	+	-	Q	+	╁	+	T		3					t	\pm	34-5	& INERTINITE ONLY
E	\dagger						İ					1	1					I	C	2	_	2	O		I	•	$\mathbf{X}_{\mathbf{Q}}$	X	Q	Ň	0	Q	0	_	C	7 7 3	FINELY DISSEMINATED
F	\downarrow	-	_		_	+	+	4	_	-	ŀ	╁	+	-		H	╀	╀	+	-	5 k	<u></u>	_	0	C	5	+	2	Ó	Ü	ā	O	0	C		13.	PARTICLES
H	\dagger	+			-	t	$^{+}$	\dagger		_	t	+	1				İ	İ	1	1		d O		Ĭ		1	1	<u>5</u>		0			I	Ι	Ŀ	IZ	AMORDUOUS VASCIII AD
	1	\exists			F	T	Ţ	\dashv			F	Ţ	Ţ	4		Ĺ	F	L	1))	<u>O</u>	L	+	E	+	4	4	\dashv		ŀ	-	+	C	4	34-5	PLANT MATERIAL
H	+	\dashv	-	-	\vdash	+	+	\dashv	-	-	+	+	+	+		<u> </u>	\dagger	\dagger	\dagger	f	1			\perp	ľ	1	K	2	<u> </u>	0	O		þ		1	1:2	AMORPHOUS MATTER OF
	1				L	1	#	\exists			T	1	1		_	L	I	T	Ţ	7	1		F		Ţ	Ŧ	F	3	3	3	3	<u> </u>	13		7	ြယ	ALGAL ORIGIN; MARINE (M)
-	+	-		H	-	+	4	\dashv		-	+	+	+	-	_	H	+	+	+	+	+		-	C		+	+	+	┨		\vdash	\vdash	\pm	Т		3 5	NON MARINE (N)
+	\dagger	_			-	İ	1	_	_		İ	1	1				İ	#	#		2	Ŏ		T		Ţ	#					Ď	C		Ţ		ood air PRESERVATION STATE
F	1	\Box			F	Ţ	1	J	_	L	\perp	1	\downarrow	_	_	F	+	+	- (3	4	<u>U</u>					+	5	go		۲	۲	0	4	牛		fair PRESERVATION STATE
-	+	-		\vdash	+	+	+	+	_	╁	+	+	+	_	_	+	+	\pm	Ĵ	1	_		Ĭ	Ì	Ï	1	Ĭ		_	Ľ		T	#	#	1	Ţ	Reworking (1-5)
t	1				T	#	1	\exists		T	T	I	7			F	T	Ţ	Ţ	7	4		F	F	Ŧ	7	_	_	$\overline{}$		5	-	C	╀	+	→	undiff. mar. ENVIRONMENT OPEN mar. OF DEPOSITION
+	4	\dashv	-	H	+	+	+	\dashv		+	+	+	+	_	\vdash	+	+	+	+	+	\dashv		\vdash	C	+	+	+	4	<u>_</u>	۲	۲	ľ	Ť	C	1	5] 1	restricted mar.
ŀ	+	_		T	\dagger	\pm	1			T	1	1	士			T	1	#	1	1					1	1	1				F	F	Ţ	C	26	יַ ב	nr.shore mar./strong terrig.infl some mar. influence/brackish
ľ	1			F	F	Ŧ	7	\neg			1	+	4		L	+	+	+	+	5		\overline{C}		4	K	4	+	\dashv	-	\vdash	\vdash	+	+	+	+		non-mar./freshwater
H	+		-	+	+	+	+	_		†	士	 	1	_	T	T	1	1	Ι					1	#	-	M					L	Ţ	Ţ	Ţ	Ţ	•
	1			L	I	1	1	\Box	_	F	Ţ	1	\dashv	_	L	L	\downarrow	4	4	5		n	-	,	+	5	3	\overline{a}	Q	2	0	H	3	牛	牛	<u> </u>	
}	+		-	-	+	+	+	-		+	+	+	+		+	+	+	+	┩	5	Y	يه	۲	4	7		V	ی				1	1	1	1	_ `	
ŀ	+	_			İ	\pm	_			Ţ.	1	1				I	1	1	1	1			I	Ţ	7	7	*			F	Ľ	Γ	1	Ŧ	\downarrow	٦,	·
F	4			L	\perp	+	-1	\dashv		+	+	+	4		-	+	+	+	+	4	_		+	+	+	\dashv	\dashv	_	-	t	t	+	\dagger	+	\pm	_ ͺັ	
ŀ	+	_	H	\vdash	+	+	+		_	\perp	1	1	_	_	L	T	1	1	1	2	ž	3	1-	, 19	31	귉	7	Ž	Z	8	1	· z	42		5	ŢŢ	,
ļ				I	Ţ	Ţ	\downarrow	\Box		F	F	7	4		L	+	+	+	_ [ğ	ğ	క్ర	Į	į	كالأ	35 05	٥	Ÿ	E.	6	P		NO.			쇠	SOURCE POTENTIAL FOR OIL (O) AND GAS (G)
ŀ	+	_	-	+	+	+	+	_	-	+	+	+	\dashv	_	+-	\dagger	\dagger	\dagger	1	7	Ž	3	į	K	ŶĮ.	2	F	€,	8	6	怖		n in	1	ξK	7	LOV OTE (A) MID OUT (A)
ŀ	╛	_	╁─	+	+-	+	+	-	-	†	+	7	7		T	T	T	1	7	N	U	۱,	٦	۲	9	Л	-	Q.	內	1_	L	1	L	<u> </u>	<u>ال</u>		

TABLE 3 ROCK-EVAL AND PYROLYSIS DATA

WELL: 6507/10-1 LOCATION: OFFSHORE NORWAY

DEPTH (m)	P1 KG/TONNE	P2 KG/TONNE	GOGI	TOC (%wt)	HYDRÖGEN INDEX	
1620 1680 1770 1830 1890 1980	0 0 0 0 0 0	.1 .3 1 .7 .4 .1	7.			
2040 2130 2220 2310 2400 2610 2700 2760 2775	0 0 0 0 0 0 0	.5 0 .2 .3 .5 .2 .3	_			
2780 2785 ×	2.1	.3 67.7	. 14	10.9	621	
2790 ×	. a	59.3	.22	8.6	689	
2797 × 2803 ×	1.1	42.2 21.9	.28 .19	8.5	496	Kima Clay
2808 ×	Ô	. 1	• • •		,	(; *******)
1 2810 X	1.3	50.4	25	9.6	525	
2831 X	1.5.6	1.4		1.9	73 52	and the state of t
2837 × 2840 ×	.2 .1	1.3		8.4	2	the second of th
MM 4 11	. 1	.3		.84	35	
He of her 2848 x	. 1	. 4		1.2		Yeather
2862 X	. 1	Ü			. — /	16000
2871 ×	0	0		m s	يعتر تعمر	
2877 ×		.5	<u>ማ</u> ፈ	.96	52	t at base Brent
Brent 2990 x 2992×	0	23.8 0	. 26	5.6	420-	
30160	. 1	. 4	·	. 8	50	
Date 3020c	.7	32.9	. 2	7.9	416)rake
3037 c	. 1	1.8		1.9	94	
3120 ×	. 2	5.7	.24	<i>"</i>) 4	en att en	
3149 X Cook 3200-X	. 3 . 1	5.4 0	.21	2.1	257	
3225~	.3	2.7	. 38	2.4	112	Look
3250-X	. 2	. 3		1	30	-0 0 N
3290-0	1.2	35.8	2	5	716	property and the second of the
3342-0 3374-×	0	1		1.4	71	• .
3400-X	.2 .3	3.1		3	103 C	oal Unit
3462-X	5.6	245	. 55	65.8	372	and the second s
3472 X	8.6	240	.38	•	April 1	
3499- x k	ent .	30.2	. 39	10.9	277	

TABLE 3 CTD

ROCK-EVAL AND PYROLYSIS DATA

WELL: 6507/10-1

LOCATION: OFFSHORE NORWAY

DEPTH (m)	KG	P1 /TONNE	P2 KG/TONNE	GOGI	TOC (%wt)	HYDROGEN INDEX
3506 - 5 4 3550 - 5 4 3598 - 5 5	coal	9.4 0	246 0	. 34	61.2	403
3598-5 5 3603.9-5	is L mud	0	0 0		e e	

NOTE:- GOGI VALUE IS A NUMERICAL REPRESENTATION OF THE SOURCE POTENTIAL OF A SAMPLE AT ITS PRESENT MATURITY. INTERPRETATION WITHOUT REFERENCE TO PYROLYSATE DISTRI-BUTION & MATURITY MAY BE MISLEADING!

TABLE 3A

KEROGEN PYROLYSATE DATA

WELL: 6507/10-1

	Sample			Zwt ir	1 P2			GOGI
	Depth	C1	C2-C5	C6-C9	C10-C13	C14-C22	C23-C36	61465
	2785	7.8	4.5	21.2	17.2	30.9	18.4	.14
R	2790	15.1	2.7	15.6	17.8	30.1	18.1	.22
Clay	2797	20.3	1.3	12	15.6	31.4	19.4	.28
Kimm.	2803	9.8	6.4	16.2	18.3	31.4	17.9	.19
F	2810	17.7	2.4	12.6	14.9	30.6	21.8	.25
7	2990	18.4	2.5	17.3	18.5	28.6	14.7	.26
Drake	3020	11.4	5.3	16.2	16.8	30.4	19.9	.2
	3120	13.1	6.3	15.1	18	31.1	16.4	.24
00 700	3149	13.2	4.1	17.4	18.6	30.7	10	.21
V	3225	20.9	6.6	17.1	18.1	25.8	11.5	.38
	3290	10.2	6.7	16.5	17.2	29.8	19.6	.2

TABLE 3A

KEROGEN PYROLYSATE DATA

WELL: 6507/10-1

	Sample			%wt i	n P2			GOGI
	Depth	C1	C2-C5	C6-C9	C10-C13	C14-C22	C23-C36	
	3462	32.8	2.6	8.5	12.7	24.5	18.9	.55
	3472	23	4.7	13	14.1	27	18.2	.38
1	3499	18.7	9.4	14.6	13.9	25.7	17.7	.39
	3506	21.3	4	16.7	14.6	26.6	16.8	.34
								·
				·	·			
			·					
-							·	

TABLE 4 LITHOLOGY AND TOC DATA

WELL: 6507/10-1 ADDITIONAL DATA LOCATION: OFFSHORE NORWAY

DEPTH(m)	AGE/FM	PICKED LITHOLOGY	%TOC	%CARBONATE
1620	TERT/HORDALAND	SHALE-C	0.82	. 36
1680	TERT/HORDALAND	SHALE-C	0.48	3.6
1770	TERT/HORDALAND	SHALE-C	1.4	7.6
1830	TERT/HORDALAND	SHALE-C	0.89	. 41
1860	TERT/HORDALAND	SHALE-C	0.71	5.8
1980	CRET/BALDER	SHALE-C	0.32	1.1
2010	CRET/BALDER	SHALE-C	0.75	.19
2040	-CRET/BALDER	SHALE-C	0.88	1.9
2130	CRET/SHETLAND	SHALE-C	0.45	.5
2220	CRET/SHETLAND	SHALE-C	0.94	, 08
2310	CRET/SHETLAND	SHALE-C	1	. 29
2400	CRET/SHETLAND	SHALE-C	0.98	. 09
2610	CRET/SHETLAND	SHALE-C	0.9	.19
2700	CRET/SHETLAND	SHALE-C	1	. 06
2760	CRET/SHETLAND	SHALE-C	3.4	43.5
2775	CRET/SHETLAND	MDST-S	0.54	16.6
2780	CRET/SHETLAND	LST-S	073	57.8

SAMPLE TYPES :-N-CORE SAMPLE S-SIDEWALL CORE

O-OUTCROP C-CUTTINGS

TABLE 4 CTD

LITHOLOGY AND TOC DATA

WELL: 6507/10-1

LOCATION: OFFSHORE NORWAY

DEPTH(m)	AGE/FM F	PICKED LITHOLOGY	%TOC	%CARBONATE
2785 2790	U.JUR/KIMM U.JUR/KIMM	MDST-S MDST-S	10.9 8.6 8.5	10.4 .09 .47
2797 2801 2808	U.JUR/KIMM U.JUR/KIMM U.JUR/KIMM	MDST-S MDST-S MDST-S	6.2 0.21	.35 7.6 Konm
2810 2825	U.JUR/KIMM U.JUR/KIMM U.JUR/KIMM	MDST-S MDST-S MDST-S	9.6 - 12.1 1.7	2.8 7.2
2828 2831 2837	U.JUR/KIMM U JUR/HEATHER	MDST-S MDST-S	1.9- 2.5-	1.3
2840 2843 2848	U JUR/HEATHER U.JUR/HEATHER U.JUR/HEATHER	MDST-C SILTST-S CARB SILTST-S	8.4 - 0.84 - 1.2 -	.24 .86 1.2 Heather
2862 2871 2877	U.JUR/HEATHER U.JUR/HEATHER M JUR SILTST FM	SILTST-S SILTST-S MDST-S	0.5 0.74 0.96 /	16 .25 .43
2990 2992	M JUR SST FM M JUR SST FM	MDST-C SILTST-S	5.6 0.17	.18
3016 3020 3037	L JUR SILTST FM L JUR SILTST FM L JUR SILTST FM	SILTST <i>-S</i> MDST-C SILTST-S	0.8 / 7.9 / 1.9 /	5.9 .2
3149 3200	L JUR SST FM L JUR SST FM	SILTST-S SILTST-S SILTST/SST-S	2.1 - 0.1 2.4 -	.17 .34 2.1 Cook
3225 3250 3290	L JUR SST FM L JUR SST FM L JUR SST FM	SILTST/SST-S SILTST-C	1	. 27 3. 4
3342 3374 3400	L JUR COAL UNIT L JUR COAL UNIT L JUR COAL UNIT	SST-S SST/COAL-S SST/CARB MDST-	0.13 1.4 ~ -S 3 ~	.5 .4 .46
3462 3499	L JUR COAL UNIT L JUR COAL UNIT	COAL-S MDST-S	65.8 - 10.9 - 61.2 -	16.3 .28 Coal Unit
3506 3550 35 98	L JUR COAL UNIT L JUR COAL UNIT L JUR COAL UNIT	COAL-S MDST-S SST-S	0.62 0.13	1.9° 3.1
3603	L JUR COAL UNIT	CARB MDST-S	1.1	6.6

SAMPLE TYPES :-N-CORE SAMPLE S-SIDEWALL CORE

O-OUTCROP C-CUTTINGS

TABLE 5 SEDIMENTS SOLUBLE EXTRACT DATA

WELL: 6507/10-1 LOCATION: OFFSHORE NORWAY

DEPTH (m)	TOC %wt	TSE/TOC 0/00	SAC/TOC 0/00	CPI	ASPHALTENES	-
2785	10.9	46	4	1.11	28.9	
2797	8.5	40	3	1	35.2	Kenn
2810	9.6	26	2	1.01	36.1	
3020	7.9	36	3	1.12	35.5	(A) /-
3037	.89	33	12	1.25	n . d .	Oraks
3120	1.9	26	7	1.42	n.d.	
3149	2.1	2	5	1.43	n.d.	Cook
3290	5	36	6	1.18	n.d.	
3472	54.7	16	2	1.27	42.2	
3499	10.9	11	1	1.23	52.3	Carl Unit
3506	61.2	2	1	1.28	48.4	

TABLE 6
SEDIMENTS SOLUBLE EXTRACT DATA

WELL: 6507/10-1

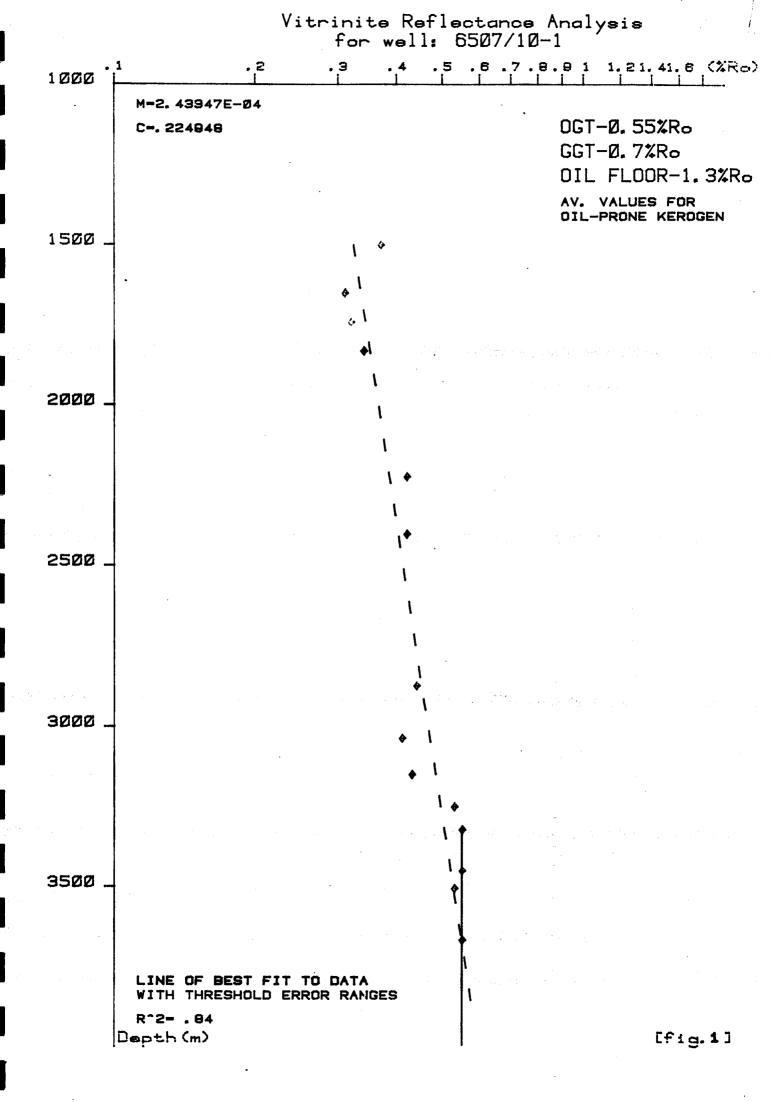
LOCATION: OFFSHORE NORWAY

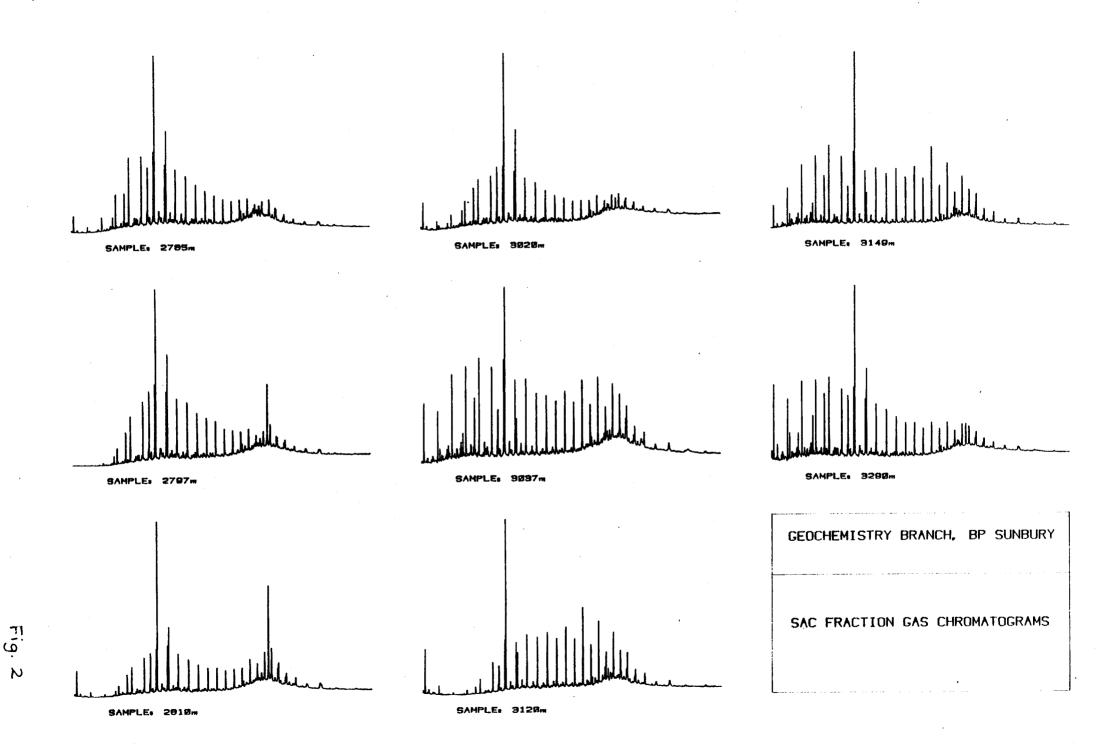
DEPTH(M)	%SAC	%TSE	PRIST/PHYT	PRIST/C-17	PHYT/C-18
2785	10.44	.51	1.66	2.59	1.7
2797	9.54	.34	1.53	2,64	1.8 Kumm
2810	10.26	. 25	2.52	4.31	1.62
2880.5	30.9	.001	N.D. P.	N. D. P.	N.D.P. Brent
3020	9.94	. 29	1.74	3.34	2.05
3037	37.29	.03	4.02	2.06	.56. Drake
3073	22.7	.002	1.22	.62	. 57
3120	29.92	.05	4.04	3.83	. 92
3149	24.31	. 05	5.01	2.73	.67 Cook
3290	17.4	.18	1.84	2.78	1.74
3472	15.05	.88	7.19	3.22	.38
3499	13.8	.13	5.73	2.28	.32 Coal Vint
3506	11.05	. 1 8	6.95	5.93	.84

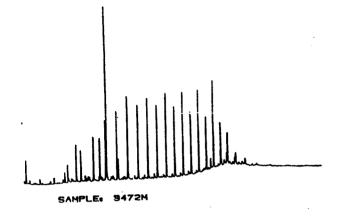
TABLE 7
CARBON ISOTOPES DATA

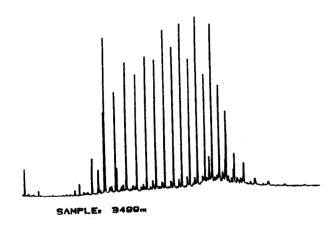
WELL: 6507/10-1

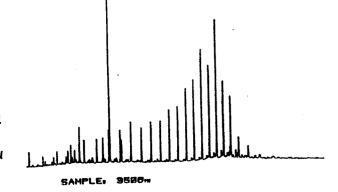
LOCATION: OFFSHORE NORWAY

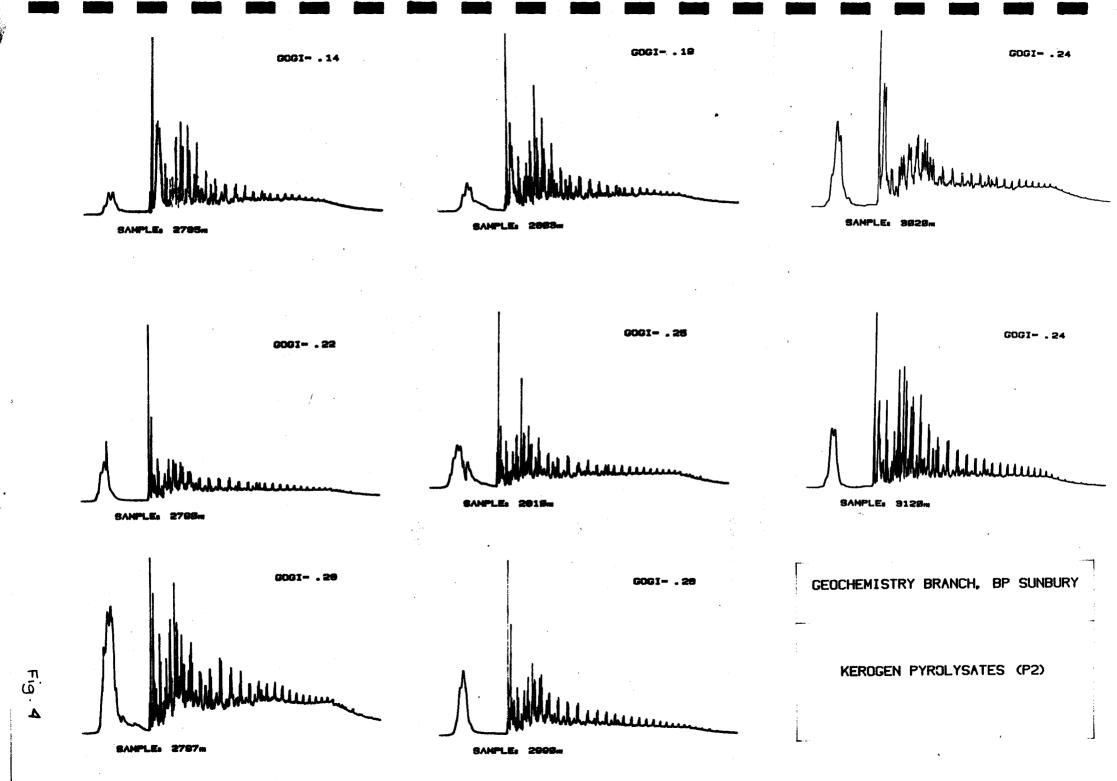

	DEPTH (m)	ISOTOPE RATIO PERMIL	SAMPLE TYPE	
svic	2785	-29.8	KEROGEN	
Swe	2797	-28	KEROGEN	Kimm
Sw(2810	-25.4	KEROGEN	and the second s
C	2880.5	-27.8	CORE EXTRACT(TSE)	Brent
Contint	3020	-27.4	KEROGEN	Drake
(y/×	3037	-27	KEROGEN	Wars
'C	3073	-26.8	CORE EXTRACT(TSE)	
5-46 2	3120	-26.5	KEROGEN	Cook
Suic	3149	-26.5	KEROGEN	COOK
· · · · · · · · · · · · · · · · · · ·	3210	-26.8	KEROGEN	
5616 3	3472	-25.6	KEROGEN	
5 MC	3499	-25.7	KEROGEN	Coal U
SWC	3506		KEROGEN	

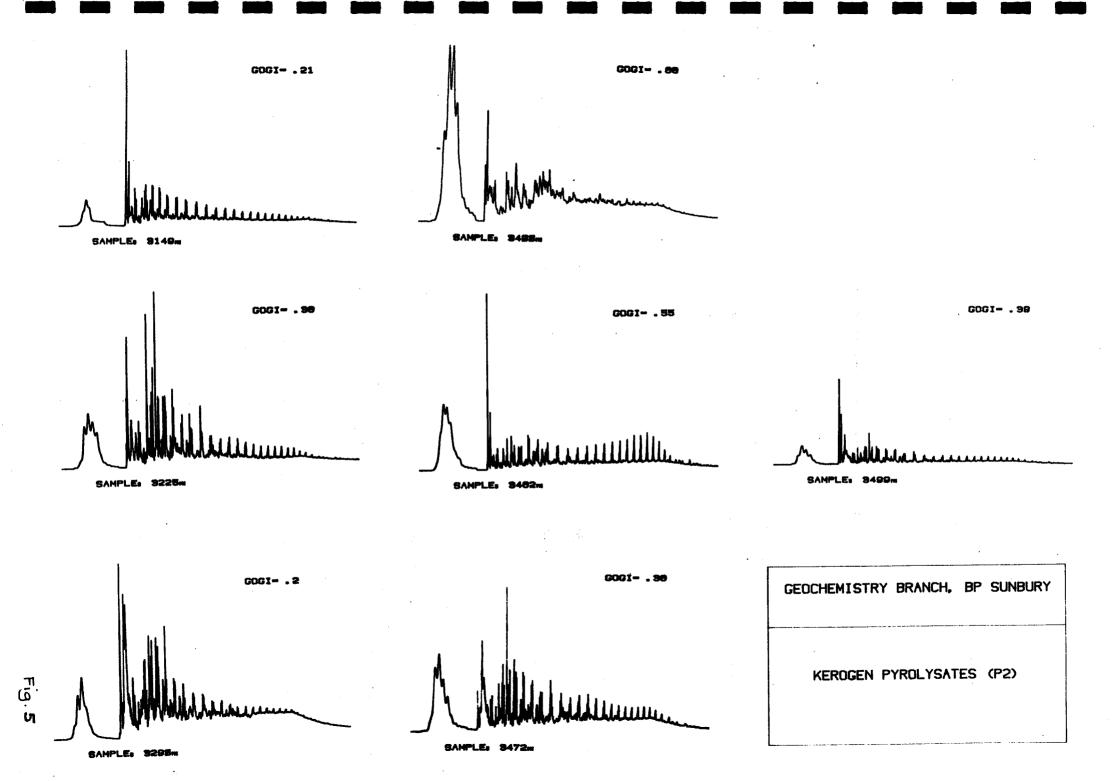

C-13/C-12 ISOTOPE RATIOS RELATIVE TO PDB STANDARD SECONDARY STANDARD: NBS-22 AT -29.4 PERMIL

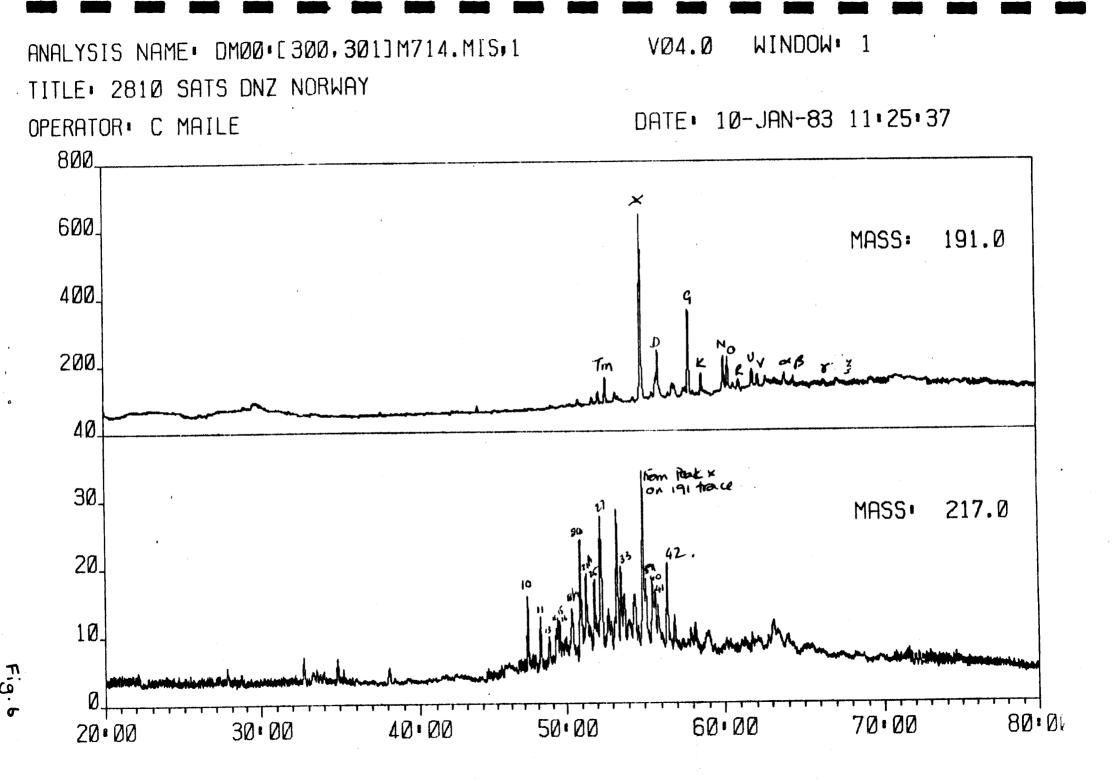

TABLE 8


MOLECULAR PARAMETERS GC/MS ANALYSIS


2810m	3120m	3290m	3472m	3499m	3506m
0.56	0.50	0.53	0.58	0.58	0.57
0.53	0.54	0.55	0.57	0.57	0.68
0.83	0.75	0.76	0.76	0.75	0.75
0.46	0.24	0.27	0.48	0.48	0.54
0.57	0.28	0.45	0.39	0.36	0.42
<u>-</u>	23.4:12.9:63.7	30.6:28.4:40.9	6.6:14.3:79.1	8.1:19.7:72.2	12.9:17.1:69.9
	0.56 0.53 0.83 0.46 0.57	0.56 0.50 0.53 0.54 0.83 0.75 0.46 0.24 0.57 0.28	0.56 0.50 0.53 0.53 0.54 0.55 0.83 0.75 0.76 0.46 0.24 0.27 0.57 0.28 0.45	0.56 0.50 0.53 0.58 0.53 0.54 0.55 0.57 0.83 0.75 0.76 0.76 0.46 0.24 0.27 0.48 0.57 0.28 0.45 0.39	0.56 0.50 0.53 0.58 0.58 0.53 0.54 0.55 0.57 0.57 0.83 0.75 0.76 0.76 0.75 0.46 0.24 0.27 0.48 0.48 0.57 0.28 0.45 0.39 0.36



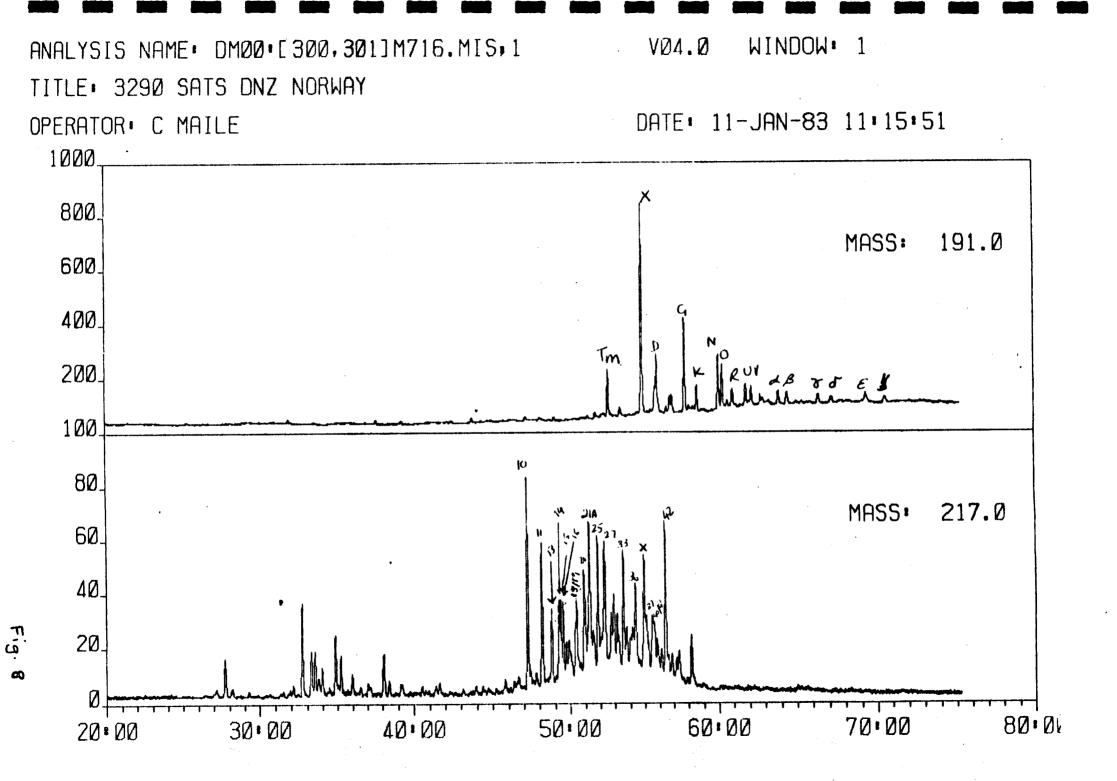


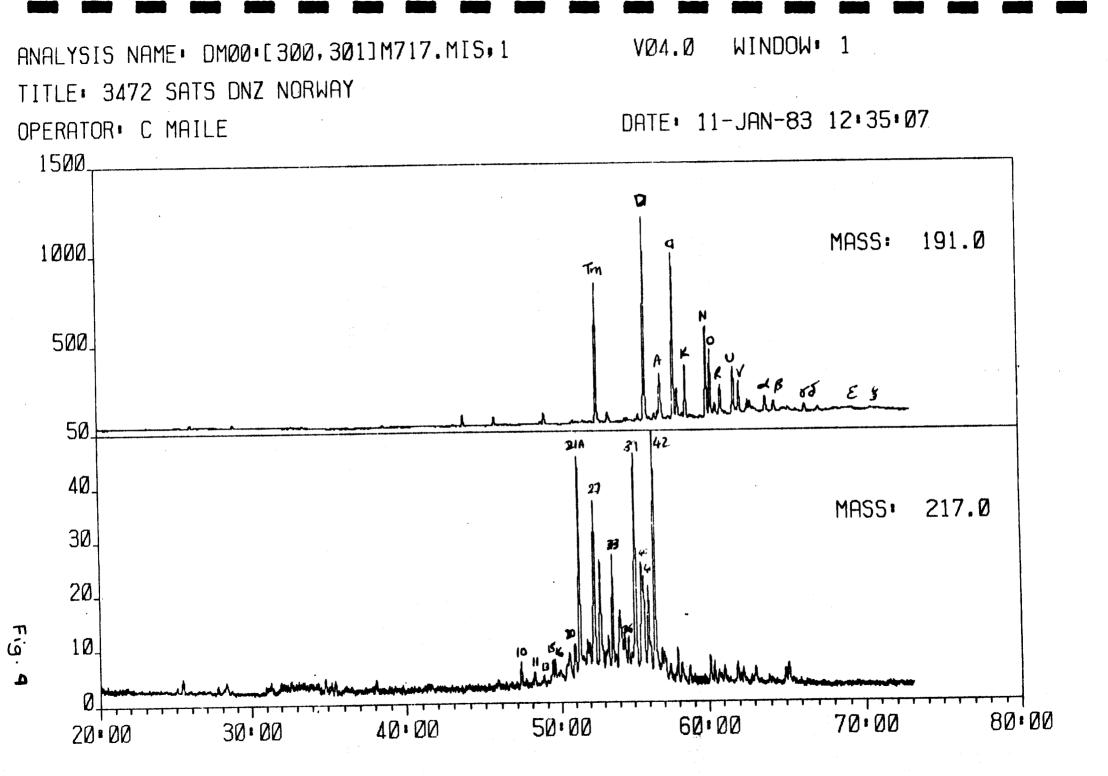


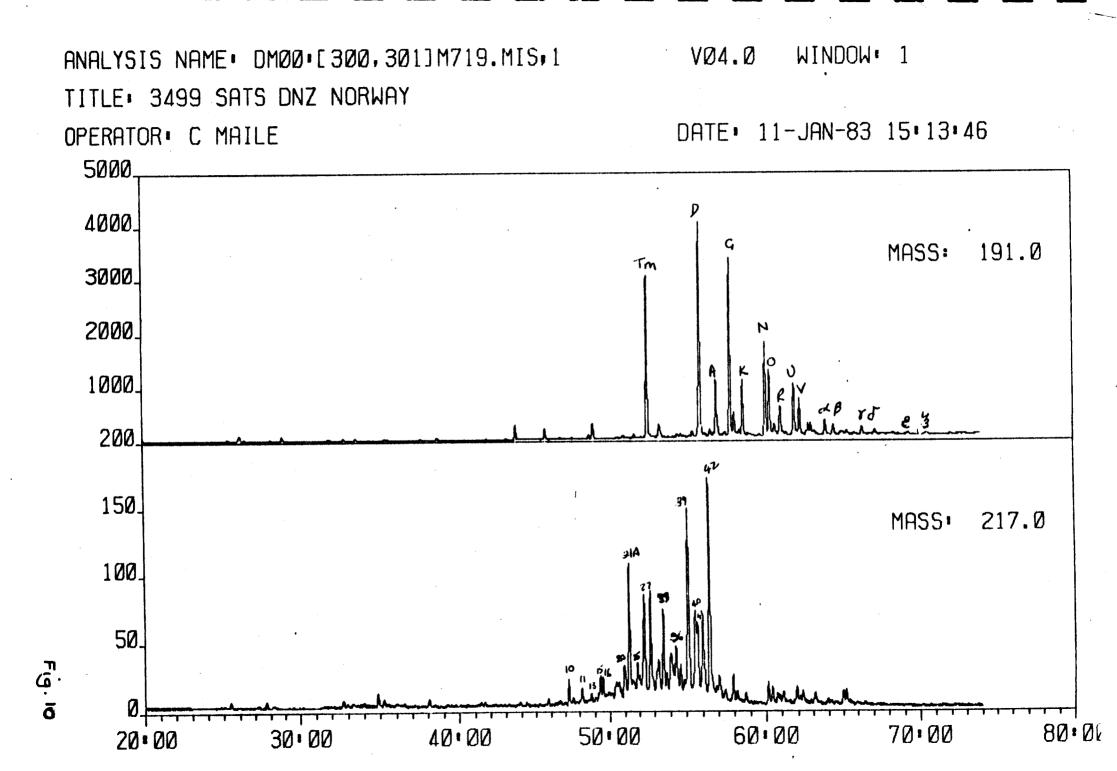
GEOCHEMISTRY BRANCH, BP SUNBURY

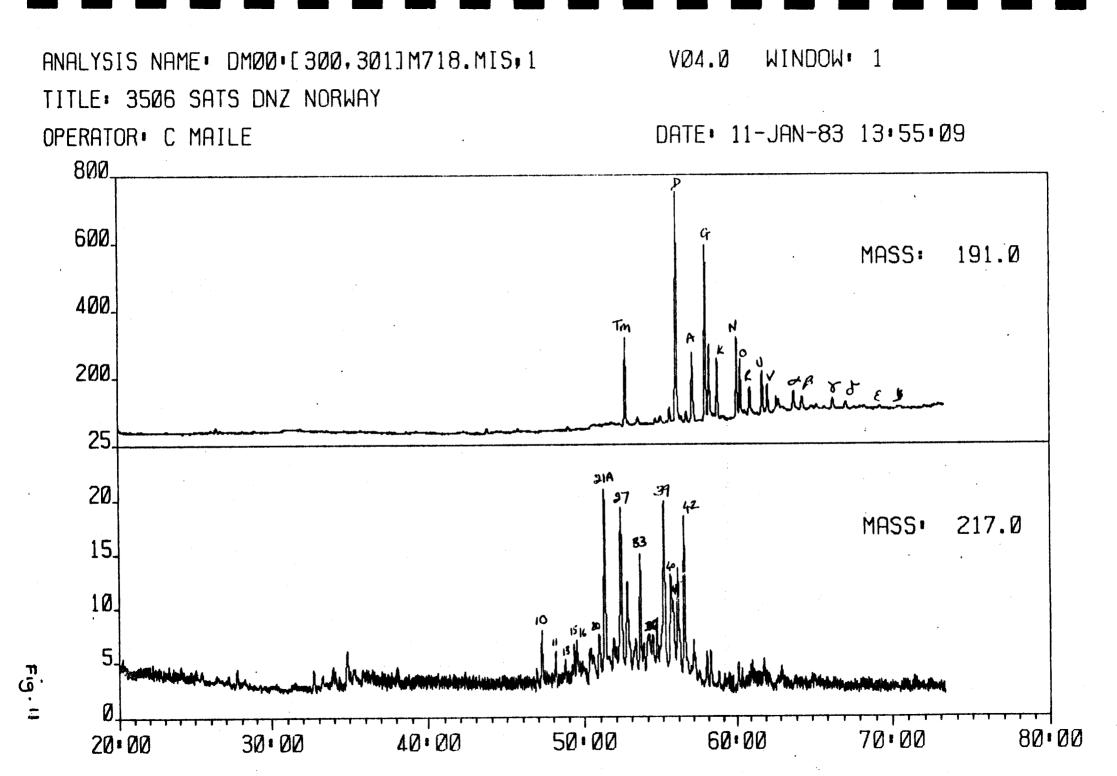
SAC FRACTION GAS CHROMATOGRAMS

50.00


40.00


20:00


30:00


60:00

80.06

WELL: 6507 / 10-1

LOCATION: OFFSHORE NORWAY

OPERATOR:

EXPLORATION LIBRARY

Date Spudded: 10-7-82 Date Completed: 18-10-82

3698 m TD:

BP RESEARCH CENTRE, SUNBURY OPERATIONAL SERVICES GROUP

PETROLEUM GEOCHEMICAL LOG

SCALE = 1: 10,000

LATURE 35 HC SPY		SCALE = 1: 10,00
MATURITY INDICATORS	GEOLOGICAL	SOURCE ROCK QUALITY COMME
PORE COLOUR VITRINITE GENERATION CA	ARBON AND SERENCE WELL DATA	TOTAL ORGANIC VISUAL PYROLYSIS DATA CARBON % KEROGEN SOURCE TYPE ROCK - EVAL PRODUCTS
	NDEX WLLL DAIA	CUTTINGS SWC B GOGI RATIO MAX YIELD kg/t OIL GAS
MMATURE IMMATURE IMMATURE SO DI SO DI THRESHOLD 1000 111 SO DI THRESHOLD 111 SO DI THRESHOLD 111 SO DI THRESHOLD	Depth Graphic Picked STRATIGRAPHY Drilled Log Log	GOGI RATIO MAX YIELD kg/t OIL GAS YIELD kg/t VIELD kg/t
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2.0 1.0 E of tt & m	0.5 × 1.5 3.0 FOX FOX FOX 0.2 \$\frac{2}{5}\$ = 0.5 1.5 5 10 15 \frac{15}{5}\$ \text{ is 2 \frac{15}{5}}\$ \text{ is 2 \frac{15}{5}}\$
	250 — —1000 —	
	500 - 8	
	2000 0	
	750	
	- 3000	
	1 1000	
	1250 - 6	
] >	
●(22)	1500 ———————————————————————————————————	
(f2) ◆ ◆ (17)	<u> </u>	
•(20)	1750	
•(20)	-6000 G	<u>-1111111111111-</u>
O(3) •(8)	2000-1/1/	
O(1)		
(20)	ν <u>α</u> – ⁷⁰⁰⁰	
•(9)	O O -2250	
(11)	0	
(7) (4) (1)		
(7) • O(2)	1	
 (6) ◆ (13) (7) 	C R 9000 V	
(20)	KIMM- HEATHER	58 42 50 22
	MID. JUR- SST.	
• (5) • (7)	JUR. SILTST10000	● ● 1
(19) (1)		
(20)	3250	
(20)	11000 - 11000 - 11000	
(20)		65-8
• (20)	1 V O -3500	10-9
•(3) • (20)	CRHAET AN 12000	
	3750-	
A PROBABLE A AUTOCHTHONOUS	-13000 -4000-	
PROBABLE • AUTOCHTHONOUS POSSIBLE • ALLOCHTHONOUS		
+ BITUMEN STAINING AND / OR WISPS.		
	Note	

* Average Generation Threshold for Oil Prone Kerogens.
TSE - Total Soluble Extract.

TOC - Total Organic Carbon. SAC - Saturates Content.

GOGI = Gas/Oil Generation Index (PGC):P₁ = Hydrocarbon Yield at 250°C, (Rock-Eval). P₂ = Pyrolysed Hydrocarbon Yield from 250-550°C (Oil plus Gas), (Rock-Eval).
 Source Rock Potential Ratings for PGC and Rock Eval (P₂ only) Yields are :-<0.5, Insig:<1.5, Poor:>1.5-5, Moderate:>5-15, Good:>15, Very Good.

3. Values represent Maximum Theoretical Yields in kg/tonne. Amount of Hydrocarbons actually reaching the reservoir may be only 1% of this Value. 4. Samples with Oil Yields of < 1.5 kg/tonne or TOC'S of < 0.5% are unlikely to generate sufficient Oil to commence migration.