

Completion Report Well 34/10 - 28

PL 050 Statoil/Norsk Hydro/Saga Petroleum

L

Tittel/Undertittel

1

COMPLETION REPORT

3 4 / 1 0 - 2 8

Org.enhet LET BERGEN	Kontraktnr./Prosjektnr.	
Rapportnr./Revisjon	Sted/Dato	
	BERGEN, 31.05.1986	

Gra	dering
	FORTROLIG STRENGT FORTROLIG

Distribusjon

Fri distribusjon

Kan distribueres fritt i Statoil

Ingen distribusjon uten tillatelse fra ansvarlig avdeling

Tittel/Undertittel

COMPLETION REPORT

34/10-28

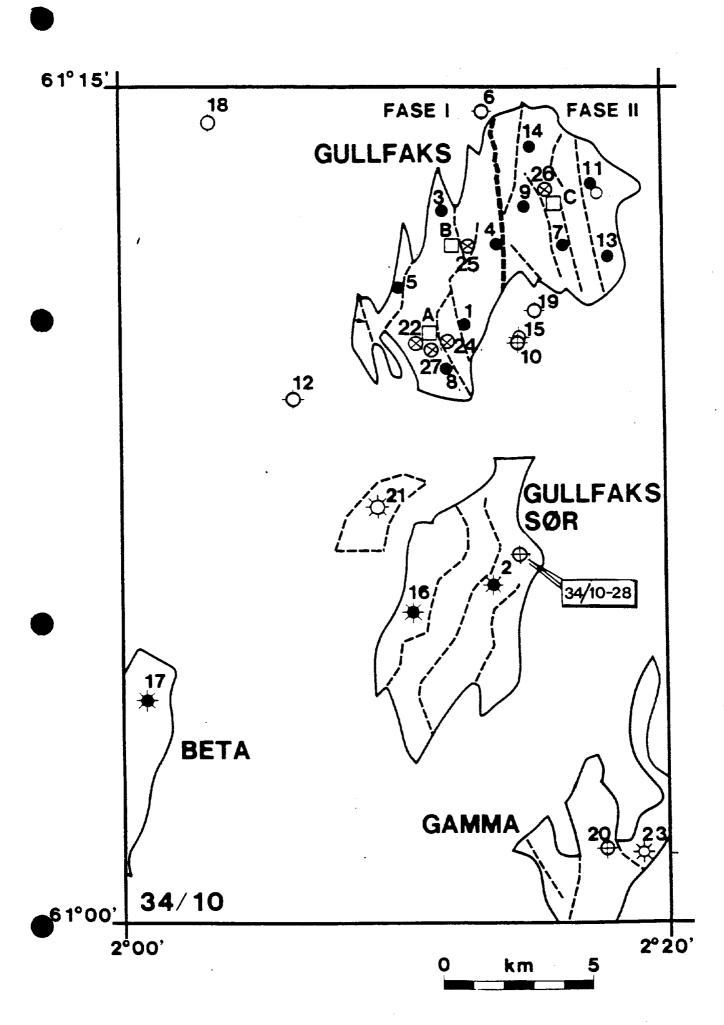
Fagområde/Emneord

BRØNN 34/10-28 - SLUTTRAPPORT

Oppdragsgiver	PL 050	
Org.enhet	LET BERGEN	
Kontraktnr./Prosjektnr.	×	Rapportnr./Revisjon

Utarbeidet av			····		
		JANNE KOF Garvik	RNSTAD	LET BERGEN BOR CCB	
Antall sider	Antall vedi.	Antall kopier 25	Tekstoperatør	33	

Org. enhet	Sted/Dato
LET BERGEN	31.05.1986
Godkjent av	Signatur CALL
LETEAVDELINGEN, BERGEN	Sile M. abrhe
Godkjent av	Signatur
BOREAVDELINGEN, BERGEN	terretelle
Godkjent av	Signatur
U&U, BERGEN	John Hangens
	y O


PL 050

•

STATOIL - NORSK HYDRO - SAGA PETROLEUM

COMPLETION REPORT

34/10-28

CONTENTS:

SECTION 1	:	General Information
SECTION 2	:	Geological Summary
SECTION 3	:	Drilling Report
SECTION 4	:	Marine Report
ENCLOSURES	:	 Geological Sample Descriptions Statoil Completion Log Mudlog (Anadrill)

The following reports are available:

TITLE:

ŧ

SOURCE:

.

SUMMARY:

Final Well Report DLWDEXLOGFinal Well Report MudloggingANADRILL

GENERAL INFORMATION:

1.0	WELL DATA RECORDED:		
a)	Well Designation	:	34/10-28
b)	Well Classification	:	Appraisal
c)	Well Location	:	
<i>.</i> *	I Country	:	Norway
	II Licence	:	PL 050
	III Latitude	:	61 ⁰ 06' 31.99"N
	Longitude	:	02 ⁰ 15' 23.72"E
	IV Seismic Location	:	Shotpoint No. 405,
			Line No. 170
	V Water Depth	:	133 m
d)	Rig Data:		
	I Rig Name	:	Dyvi Stena
	II Drilling Draft	:	20 m
	III RKB - MSL	:	25 m

.

PURPOSE OF THE WELL

2.0

34/10-28 was the fourth well drilled on Gullfaks South. The well was designed to test for hydrocarbon accumulations in the north-eastern part of the Alpha structure.

The primary targets were respectively the Brent and Statfjord sandstones. The Lower Jurassic Cook sandstone, which has been water bearing in the other wells on Gullfaks South, was considered as a secondary target.

3.0 RESULTS OF THE WELL

The well was drilled to a total depth of 528 m KB into sediments of the Nordland Group. Shallow gas was found in the interval 332 - 339 m KB.

When running the BOP, after having set the 20" casing, the guide posts were damaged and the well was plugged and abandoned. WELL HISTORY

a) General

I	Spud Date	:	02.01.1986
II	Rig Released	:	16.01.1986
III	Status	:	Plugged and abandoned

b) <u>Contractors</u>

I	Drilling Rig	:	Dyvi Stena
II	Drilling Contractor	:	Dyvi Offshore
III	Cementing	:	BJ
IV	Casing	:	TOS
v	Mudlogging	:	Anadrill
VI	Mud Contractor	:	IDF
VII	MWD Services	:	Exploration Logging
VIII	Supply Boats	:	Statoil Supply-Boat Pool
IX	Diving	:	Scan Dive
x	Helicopters	:	Helikopter Service A/S
XI	Rig Pos. Contractor	:	Satnav
XII	Site Survey	:	Geoteam
XIII	Core Analysis	:	Geco

c) <u>Casing</u>

30"	shoe	at	:	257.0	m
20"	shoe	at	:	318.5	m

d) <u>Mudlogging</u>

A mudlogging unit from Anadrill was used, and the following data were recorded:

- Drilling Rate
- Temperature in
- Temperature out
- Conductivity in

4.0

- Conductivity out
- Total Gas
- Gas Chromatography
- D-Exponent
- A-Exponent
- Mudweight
- Pore Pressure
- Surface Weight on Bit
- Surface RPM
- Total Flow
- Pump Pressure
- Description of Cuttings Lithology
- Show Analysis

5.0 MEASUREMENTS WHILE DRILLING

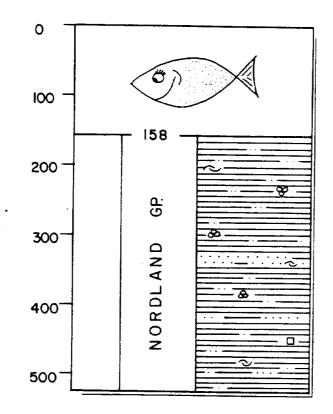
Exlog's DLWD tool was run in the 12 1/4" pilot hole section, and logs are obtained in the interval 260 - 525 m KB.

The tool provided information on gamma ray, formation resistivity and directional surveys.

Only one run was made using an 8" assembly.

6.0 WIRELINE LOGGING

No wireline logs were run in the hole.


7.0 LITHOSTRATIGRAPHY

GŖOUP	DEPTH (m KB)
Nordland Gp.	158

ł

KB: 25 m

T.D. 528 m

LITHOLOGICAL SUMMARY

The lithological summary is based on cuttings samples. The depths relate to Kelly Bushing (KB) as reference level.

Quaternary - Tertiary

Nordland Group (158 m KB - TD)

The section of the Nordland Group that is penetrated in this well is dominated by clay and has only minor sand stringers.

The clay is described as medium grey, soft, amorph, sticky and moderately calcareous.

The interval 332 - 339 m KB consists of gasbearing sand. Elsewhere in the section there is just traces of sand. The quartz grains are clear to milky white, fine to coarse, round to angular and poorly sorted.

Traces of lithic fragments, shell fragments, foraminifera and pyrite are found throughout the well.

3. DRILLING REPORT

3.1 SUMMARY

•

_

3.1 SUMMARY

The rig "Dyvi Stena" arrived location 34/10-28 January 2, 1986 at 00.30 hours.

The primary objectives were the Brent and the Statfjord sandstone. The expected water bearing Lower Jurassic Cook sandstone was the secondary target.

The well was drilled to a total depth of 528 m. The well was plugged back to 325 m due to a shallow gas zone, before the 20" casing was run and cemented at 318.5 m. When attempting to land the BOP, the guidebase no. 1 and no. 4 were found to be bent. The damage was considered too large for further drilling, so the well was plugged and abandoned.

A total of 17 days were spent on the well at a total cost of 22.7 million NOK.

"Dyvi Stena" left the location January 16, 1986.

3.2 DRILLING OPERATIONS IN INTERVAL

.

.

•

.

36"hole, 158-257 m

The hole was drilled in 7.13 hours using a 26" bit and a 36" hole opener. Average penetration rate was 14 m/hr. 1.03 s.g. spud mud was used. A survey at TD showed 0.5 degrees deviation. The 36" casing was then run and cemented with 1.5 m stick-up. The bulls eye on the PGB showed 0.5 degrees.

26"hole, 257-528 m

When the riser and pin connector was installed, the cement, 30" casing shoe and 4m of new formation was drilled out using a 26" UR. A 12 1/4" BHA with MWD tool was then RIH and a pilot hole drilled to 278 m when a power black-out occured. Further drilling was delayed 1.5 hours. Drilling continued to 297 m with one mud pump while working on the power supply. The Anadrill gas detector system then failed and the drilling was stopped in view of the potential gas filled shallow sands. After 10 hours of repair the drilling was restarted and proceeded to 336 m. Due to a shallow gas sand it was circulated bottoms up and flow checked. Another 5 m was drilled when the background gas increased and a flow check was repeated. Drilling then continued to 498 m for 10 hours. A possible shallow gas sand was flow checked at 493 m. It was then drilled to 528 m and circulated to reduce the background gas that had increased from approximately 0.2% at 500 m to 0.3-0.4% from 500-528 m. A single shot survey showing 0.5 degree deviation at 528 m was then taken prior to POOH. 1.11 s.g. seawater-gel mud was used to drill this section. Throughout the section background gas varied from 0.12-0.4%. The highest peaks were 0.5% at 334 m and 0.50% at 515 m. The section was drilled in 11.57 hours giving an average penetration rate of 23.2 m/hr. Two potential shallow gas sands were located, 332-339 m and 493-495 m. The upper one was most probably gas filled as seen with the Exlog MWD tool. It was decided to plug the hole back and install the 20" casing right above the top of the sand. A high viscosity pill was set from 528-400 m and a

cement plug set from 400-300 m. The cement plug was then dressed off to 325 m. With a 12 1/4" bit, 17 1/2 HO and 26" UR the hole was opened to 26" from 254 m to 322 m in 10 hours. The hole was displaced to 1.36 s.g. mud and the riser and pin connector pulled. The 20" casing was installed with the shoe at 318.5 m and cemented to the seabed with returns. When backing out the running tool the wellhead rotated. The cement therefore had to set up prior to POOH. When running the BOP and riser a leak in kill/choke lines were found and all the seals in the lines were replaced. The weather conditions were very poor. When nippling up the kill and choke lines prior to latching on the BOP a guideline broke because of the heave. Subsequent inspection with the mantis showed that two of the guide posts were severly bent. The hole was therefore abandoned.

Plug and Abandon

A cement plug was installed from 294-194 m and the 20" and 30" casings cut at 163.5 m, 5.5 m below the seabed.

3.3 DAILY ACTIVITIES

DAILY ACTIVITY

31.12.85 On tow to 34/10-28 location at 6 knots.

01.01.86 Continued towing.

- 02.01 Arrived at the location at 0030 hours and started anchor handling. Completed anchor handling and started ballasting the rig. Prepared spud mud, launched mantis for seabed inspection and confirmed the bit tagging the seabed at 133 m water depth. Ballasted the rig to operating draft and drilled a 36" hole from 158-194 m.
- 03.01 Continued drilling a 36" hole to 256 m. Circulated and conditioned the hole while installing a pinger at the seabed 7 m from the hole using the mantis. Drilled to 257 m and circulated the hole to high viscosity mud. Dropped a survey, retrieved same and RIH to TD. The hole was OK and POOH. Ran the 30" casing with PGB and stinger inside, stabbing in blind. Tagged the bottom of the hole, launched the mantis and inspected the PBG orientation and the stick-up. Had 1.5 m stick-up and the Peagan indicator showed 0.5 degrees. Picked up 0.5 m and circulated seawater. Cemented the casing.
- 04.01 Backed out the running tool and POOH. Prepared to run the riser. Had power black-out for 1.5 hours due to overload. Picked up the riser and the pin connector. Had to change out 4 dogs on the pin connector; was unable to torque them up to full travel. RIH with the riser and the pin connector and attempted to enter the guide posts. Positioned the rig and entered. Function tested the unlatch mechanism - OK. Pressure tested the diverter valves to 2.8 bar - OK. Did not get a function test on the port diverter valve and had to repair it.

- 05.01 RIH with a 17 1/2" bit and 26" UR Installed the diverter element and attempted to function test without success. Repaired same and drilled out the cement, 30" casing shoe and 2 m new formation. Circulated, flow-checked and POOH. Tested the MWD tool and RIH with a 12 1/4" BHA. Drilled a pilot hole from 260 m to 278 m when a second black-out occured. Repaired same and restarted drilling after 1.5 hours. Drilled from 278 m to 297 m when the rig had to be shut down for 4.5 hours due to malfunction of the gas detector in the mud room (Anadrill).
- 06.01 The shut down lasted for another 5.5 hours. Drilled the pilot hole from 297 m to 336 m, circulated bottoms up and flow checked. Continued drilling from 336 m to 341 m and flow checked again. Circulated and continued drilling from 341 m to 493 m. Circulated, drilled from 493 m to 528 m and flow checked. Pumped slug and POOH to the 30" casing shoe without drag. RIH to 528 m.
- 07.01 Circulated bottoms up with 0.47% gas. Flow checked and dropped a survey. POOH. RIH with OEDP to 450 m and pumped a high viscosity pill. POOH to 400 m and set a cement plug 400-300 m. POOH to 300 m and circulated. POOH. RIH with a 12 1/4" bit to the 30" casing shoe and WOC for 5 hours. Dressed off the plug from 298 m to 325 m. Circulated the hole clean and POOH. Made up and RIH with a 26" underreamer.
- 08.01 Under med from 254 m to 322 m. Pumped a high viscosary pill and circulated bottoms up. Displaced the hole to 1.36 s.g. mud. POOH to 182 m and pumped more 1.36 s.g. mud. POOH to the wellhead. Displaced the riser to seawater in 3 steps and flowchecked at each. POOH. Unlatched and pulled the riser. RIH with a 26" bit - no fill or any restrictions.

- POOH and rigged up to run the 20" casing. Ran the 09.01 casing and pull tested to 16 tons. Circulated 1.36 s.g. mud and cemented the casing, displaced with 1.1 s.g. mud. Had good returns throughout the job. Attempted to disengage the running tool but the 20" casing turned. Waited on the cement to set, disengaged the tool and POOH. Washed the wellhead with a jetsub and inspected the bulls eye - 0.5 degrees. POOH. Started on the APM system acceptance test.
- 10.01 Completed the acceptance test. WOW for 20 hours. The rig moved 34 m off the location. Tension tested all anchors. Got the rig back in position.
- 11.01 WOW. Anchor no.6 and no.8 slipped in anchor test.
- 12.01 WOW for 10.5 hours and started working on anchor no.8. Had to stop after 5 1/2 hours as the weather conditions got more severe.
- 13.01 WOW until 0100 hours. Started anchor handling. Reran and piggy-backed anchor no.6 and no.8. Tension tested all the anchors. Ran the BOP and riser. Joint no.8 failed a pressure test. POOH and pressure tested. Replaced all the seals on the kill line and on the choke line.
- 14.01 Ran the BOP and riser. Nippled up the lines and positioned the rig. Broke guideline no.3 due to heave Had to wait 10 hours for sea conditions at 0745 hours. to improve. Launched the mantis. Found guide posts no.1 and no.3 to be severly bent.

- 15.01 Pulled the BOP and riser. WOW for 8 hours to pull through the airgap. POOH. RIH with the bandit to inspect the wellhead. RIH with DP assisted by guide frame and the bandit. Tagged the top of the cement at 297 m. Displaced the hole to seawater and pumped a cement plug 294-194 m. POOH and RIH with 17 1/2" bit to 150 m. Ran a guide frame prior to running through the wellhead.
- 16.01 Tagged the cement and loadtested with 5 tons. POOH. RIH with a 20" and 30" casing cutting assembly to 163.5 m. Cut the casings and POOH. Retrieved the 20" and 30" casings and PGB with 18 3/4" wellhead running tool. Inspected the seabed and moved to new location at 1500 hours.

3.4 WELLBORE SCHEMATIC

. .

III 4. WELLBORE SEEMATIC

7

(Not to scale)

т

r

an and a star of

RKB - MSL: 25 m.

WATER DEPTH: 133 m.

Den norske stats ofeeslekap

All additives are per 100 kg cement

				The second of th		
	Holes	Casing	<u>Sea floor</u>	Casing cement	Plugs/Squeeze	
•	36" 26" bit 36" H.O.	30" Grade B Vetco ST-2RB	20" & 30" cut at 163.5 m	93.5 1 seawater 3.55 1 A-3L 1.56 sg <u>Tail</u> 13.1 tons "G" cement 41.7 1 seawater	Cementplug 197-294 m 24.3 tons "G" cement 2.66 1 A-7L 41.7 1 seawater	
	26" 12 1/4" pilot hole 17½" H.O 26" U.R.	20" X-56 Vetco LS 94 lbs/ft	257 m 257 m 318.5 m	2.66 1 A-7L 1.92 sg <u>Lead</u> 25.3 tons "G" cement 93.02 1 seawater 3.5 1 A-3L 1.56 sg <u>Tail</u> 19.8 tons "G" cement 44.21 1 seawater 1.78 1 A-7L	1.90 sg	
	12 1/4"		322 m 450 m 1.12 sg 1.11 sg 528 m	1.90 sg	Cementplug 325-400 m 11.9 tons "G" cement 44.1 1 seawater 1.90 sg	

.

3.5 FORMATION INTEGRITY TESTS

•

·

3.5 Formation Integrity Tests

Due to aborted drilling after 20" casing was set no Formation Integrity Test were performed.

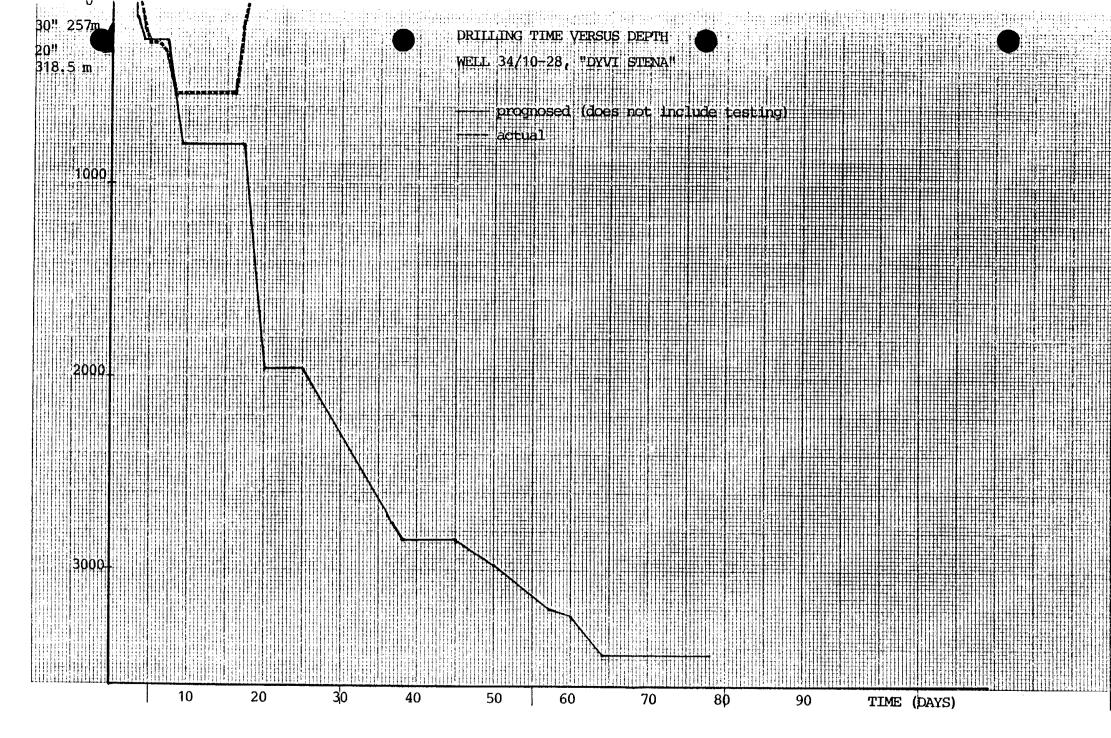
3.6 TOTAL RIG TIME DISTRIBUTION

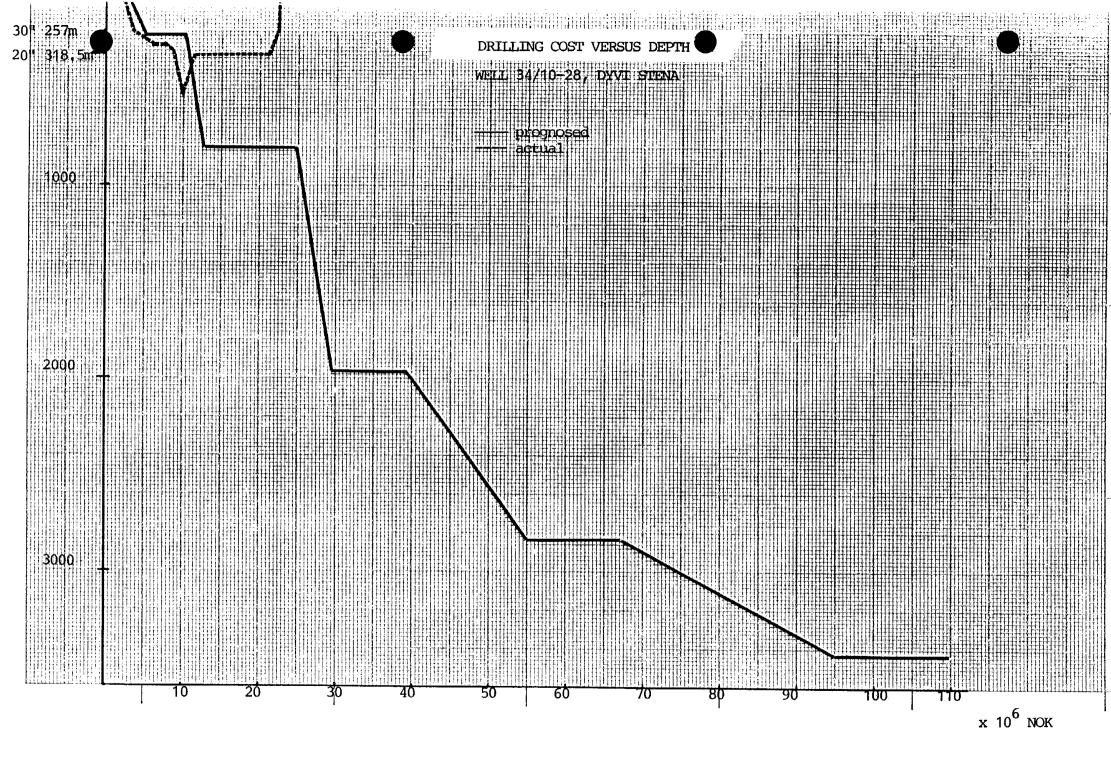
RIG TIME DISTRIBUTION FOR PLUGGING

DRILLING TIME VS. DEPTH DRILLING COST VS. DEPTH

TOTA RIG TIME DISTRIBUTION FOR VELL 34/10-28

		HRS	%	5%	10%	15 %	20%	25%	30%
	Moving	28.0	7.52						$\overline{1}$
	Mooring	15.0	4.03					┼┼╋	
	Efficient drilling	31.0	8.32					-++-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-	
	Other drilling	2.0	0.54				╶┼┈╂╌╂╌╂╴		
1	Hole opening	10.0	2.68						-+
L O	Regular tripping	38.0	10.20						+1
∓	Casing and cementing	26.5	7.11						
0	Sub sea eq. and BOP	58.5							
er	Abnormal press. detection	2.0	0.54						-+1
do	Cond. and circ.	9.5	2.55						
5	Reaming								
	Directional survey	0.5	0.13						
Drillin	Plugging	24.0	6.44	a company of the second se					
1	Formation leak-off test								
	Maintenance								
	Other								
	Coring El. logging Circ. for samples RFT Production testing Other								
	El. logging								
00	Circ. for samples								
123	RFT								
Ч С С С	Production testing								
ш	Other								
									
	Rig repairs	14.0	3.76						
	Rig moving	20.0	5.40						
0	Waiting on weather	67.5	18.12			Condition & Weissian (1997) Constrained State of the International Constraints of the Internatio			
ntime	Sub sea eq. and BOP	7.0	1.88						
+	Fishing Lost circulation								
Бомі	Well control			─ 					
	Hole problems			─ ┼╶╎╶╎╶╿╶╿╶╿					
	Formation evaluation								
	Diving								
<u>├</u> I	Other	19.0	<u>5,</u> 10						
	TOTAL	3/2.5	100.0			· · · · · · · · · · · · · · · · · · ·			


C

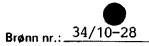


FO TIME DISTRIBUTION FOR PLUESING, INCL. IN TOTAL RIG TIME DISTRIBUTION.

		HRS	%		5%	10%	15 %	20%	25%	30%
	Preparations	0.5	2.08 8.33 4.17							
	Con.and circ.	2.0	8.33							
	Cement / Squeeze Pressure testing	1.0	4.17							
	Pressure testing									
	Wire line ops.									
	Tripping	10.0	41.67	<u> </u>						
	Other drilling									
	Subsea eq.and BOP									
D	Cutting casing									
	Diving	9.5	39.58 4.17							
Plugging		1.0	4.17							
2										
a .										
	Other									
	Waiting on weather									
e	Waiting on cement									
Downtime	Cutting casing									
at l										
₹		1								
۵										
	Other									
		1								
		1					╶┼╌┟╌┠╶┼╌┼			+1
		1								
		1								
		1								-
	ar a construction de la construc									+ 1
					<u> </u>					
	TOTAL	24.0	100.0	<u>```</u>	┉╼╍┉╉╴╴╴╄╶┉╖╼┟┉╾━	<u>· · · · · · · · · · · · · · · · · · · </u>		_		

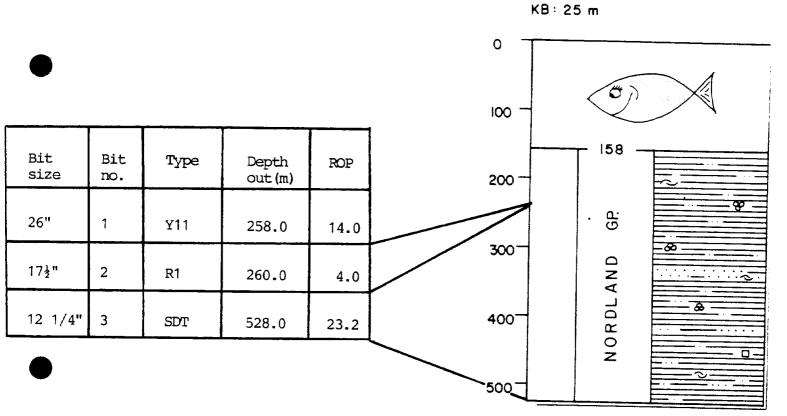
BOR

3.7 BIT RECORD AND

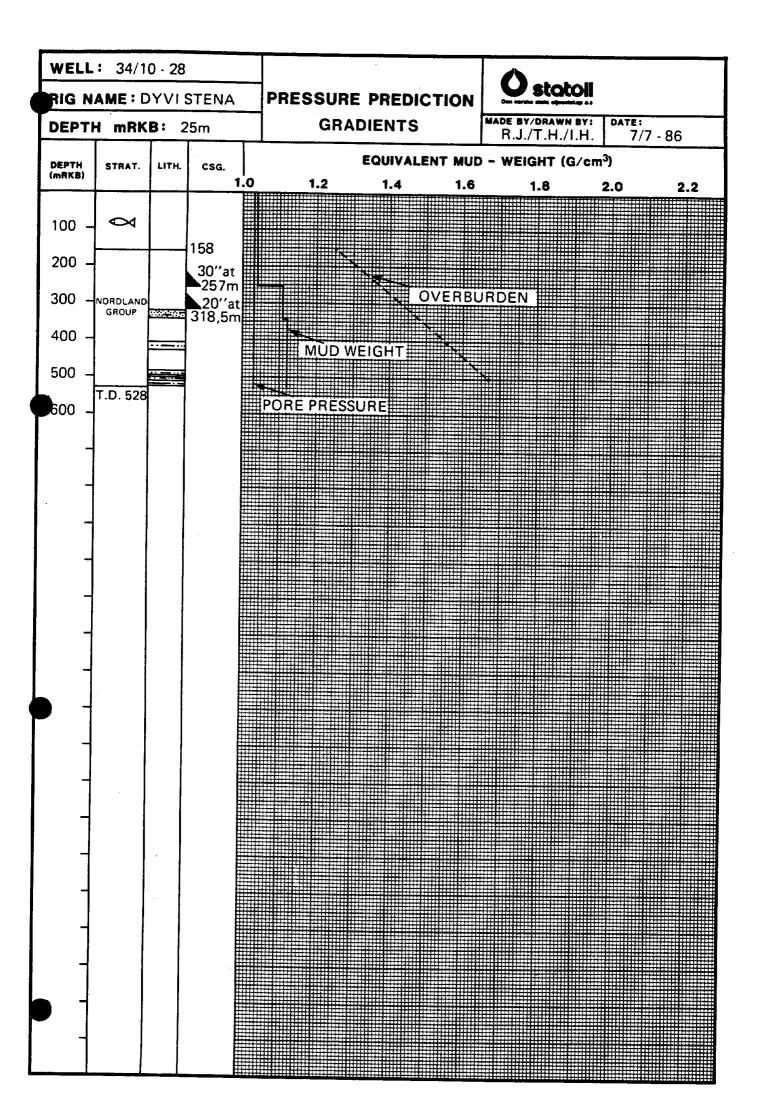


LITHOLOGY COLUMN

.



BORKRONEDATA


Nr.	B. k. Nr.	Diam.	Fabr.	Fabr.	Туре	Type	Serie no.	Dyser - 1/32"	Duber	Entershit	Dea sta		Bore-				Pumpe		Tilst			
							Dybde ut	Fremdrift	Hot. tid	Total rot.tid	hast.	V.p.b.	O.p.m.	Trykk	V.grad	v/t	Т	B	G	Anmerkninger		
1	1	26 36н.О	REED		T55467	7x21 3x24 3x20	258	100	7.13	7.13	14	4	70	90		2130	_	-				
2	2	17] 26''UR	HIC SERVCO	R1	649UR	3x20	260	:2	0.5	7.53	4	7	65	117		3820				30"SHOE +2M FORMATION (4mc		
3	3	12 1/4	SMITH	SDT	XD9648	3x18	528		11.57	19.10	23.2	0/4	160	124		3000		2		FORMATION (4mc 12 1/4 PILOT HOLE		
4	3rr	12 1/4	H		XD9648	3x18						0.5	100	103	,	2640	$\frac{\mathbf{Dr}}{\mathbf{pl}}$	ess ug	led	off cement 298-325m.		
	3RR2	12 1/4 17 <u></u> 3H.U 26"UR	11	SDT	XD9648	3x18 1x20+2x18 3x16							80	124	-	4400	3	4	1/8	UNDERREAMED 12 1/4 PILOT HOLE		
6	2RR	26"	REED	¥11	т55467	7x21														WIPERTRIP PRIC		
7	4	17 1/2"	SMITH	SDT	.XE5620	1x16 3x18														20 20 010210		
8	2RR2	01	HTC	R1	649UR	3x20	Tag T	.O.C. a	nd disp	Laced ho	le wit	n s eawat	ter									
																		-				
					;																	
																			ţ			
		• :											·····									
																<u></u> , '						
			٠			i										-						
4 01 08	-	•					•	•		,	•	-	-	- '		-	•	· •	'	•		

LITHLOGY V.S. DEPTH WELL 34/10-28

T.D. 528 m

3.8 PRESSURE PROFILES

Pressure Composite Gradients 34/10-28

The pore pressure is assumed to be equal to a water gradient 1.03 through the drilled interval. Shallow gas sands are penetrated, data for calculating the pressure are not available, but pressures up to 1.08 are exprienced in the area.

The overburden gradient is taken from the prognosis since sonic or density logs were not run in the drilled interval. 3.9 SURVEY

-

DIRECTIONAL SURVEY LISTING FOR WELL INDEX # 1: STATOIL 34/10-28 CALCULATION METHOD : BALANCED TANGENTIAL ERROR ANALYSIS : WALSTROM RANDOM ERROR MODEL

DLWD AND SINGLE SHOT SURVEY DATA SURVEYS STARTED 5 JAN 86, AT DEPTH = 158 m. LAST SURVEY # 9 AT MD = 525 m

DEPTHS ARE MEASURED RELATIVE TO RKB AT 25 m ABOVE MEAN SEA LEVEL.

+ 		کی ک طر ب ہو جو در برو	READIN	GS		+*= 	RESU	LTS	
	SVY #	DEPTH	COURSE LENGTH	INCL. ANGLE	az imuth Angle	DOGLEG DL/100'	VERTICAL DEPTH	POSI NORTH	TION EAST
	1	158.0	ø.ø	Ø.ØØ	Ø.00	0.00	158.0	0	Ø
s	2	254.Ø	96 . Ø	.50	0.00	.16	254.0	Ø	Ø
D	3	264.0	10.0	.15	257.00	1.66*	264.0	Ø	-Ø
ો	4	294.0	30.0	.12	100.00	0.00	294.0	Ø	Ø
أن		342.0	48. Ø	.17	64.00	0.00	342.0	1	Ø
Dİ	6	390.0	48.0	.15	61.00	0.00	390.0	1	Ø
D	7	439.0	49.0	.17	302.00	0.00	439.Ø	1	Ø
D	8	496.0	57.0	.21	230.00	0.00	496.Ø	1	Ø
D	9	525.0	29 . Ø	.34	74.00	1.11	525.0	1	Ø

3.10 DRILLING FLUID SUMMARY

OPERATOR Statoil

WELL NAME/No. 34/10-28

CONTRACTOR Dyvi Offshore

RIG Dyvi Stena

BAROID ENGINEERS Ferguson, Smith, Cluck

T.D. 328 m

CASING/DEPTH	DRILLING	CASING JOB	TESTING	NIPPLE UP AND TEST STACK	REAMING AND SCHLUMBERGER	OTHER AND wow	DAYS TOTAL
30"/257 m	16½	$12\frac{1}{2}$	О	0	0	19	3
20"/318 m	26	14	0	9	0	47	6
17 ¹ /2"/ -	not	drilled				168	7
				1			
:							
TOTAL	42½ hrs	26½ hrs	0	9 hrs	0	234 hrs	16

Date moved on location/skidded over slot: 1 January 1986

Date moved off location/skid off: 16 January 1986

Total days on well: 16 days

COST SUMMARY

	OPERATOR	: Statoil
	BLOCK No./LOCATION	: Gullfaks
	WELL NAME/No.	: 34/10-28
	TOTAL DEPTH	:323 m
)	DEVIATION	: 0°
	SPUD DATE	: 2 January 1986
	DATE T.D. REACHED	: 8 Januar y 1986
	TOTAL DRILLING DAYS	: 6
	÷	
	Cost Of Mud Materials Used On Well	: \$51,338.02
	Cost Of Mud Materials Used For Drilling	: \$51,338.02
)	MUD COST/M	: \$311.14
	MUD COST/DAY	: \$3,208.63
	MUD COST/ROTATING HOUR	: \$1,207.95
	DAYS ENGINEERING SERVICE	:16 days
	Cost Of Mud Materials & Engineering Service	: \$58,788.00
	END OF WELL INVENTORY ADJUSTMENT	: nil
	Engineering Days Not Included In Total Cost	:\$1,875.00 (4 days)

MUD DISTRIBUTION SUMMARY

PERATOR	: S	tatoil			Well:	34/10-	-28		R	ig: Dyv:	i Stena
I		Inter m	val			Mud/B m ³	rine			Nolt Volt	
Hole Size	Spud Depth	TD Depth	Length	Built	Dumped	Lost To Formation	Lost Over Sol Ctrl Equipment	Left Behind Casing	Transfer To Next Interval	Cuttings Wolume Drilled	Interval Mud System
36"	153	257	99	555	220	0	0	0	335	65	Spud Mud
26"	251	528	$\frac{12}{271}$ $\frac{1}{26}$ - 66	353	289	0	34	0	365	38.2	Spud Mud
17½"	not d	rilllea		238	360	0	0	0	103	0	Gyp/Polymer
	Total	S		1146	869	0	34	0		103.2	

Total Mud/Brine To Sea

: 903

ft. m 99

INTERVAL SUMMARY Spud Mud

SECTION 36" Hole 30" Casing 158-257 m Spud Depth 158 Spud Date 2 January 1986 TD Depth 258 m 3 January 1986 TD Date Maximum Hole Deviation 0° Drilling Days 16.5 hrs Total Days on Interval 2 Interval Mud Cost 4001.60 Volume Built 609 m³ Volume Transferred to Interval nil Volume Salvaged 375 m³ Volume Lost to Formation and/or Dumped Cost per Barrel \$17.10 per cubic meter Cost per ft. m .\$40.42 Cost per Day \$2000.80

Lost to formation0Dumped220Lost over Solids Control Equipment0Total to Sea220Volume Cuttings65

INTERVAL SUMMARY

Spud Mud

SECTION 26" Hole 20" Casing 257-323 m Spud Depth 257 m ft. 66 Spud Date 5 January 1986 TD Depth 323 m TD Date 6 January 1986 Maximum Hole Deviation Drilling Days 26 hours Total Days on Interval 9 Interval Mud Cost \$8192.68 Volume Built 353 m³ Volume Transferred to Interval 375 m³ Volume Salvaged 403 m³ Volume Lost to Formation and/or Dumped Cost per Barrel \$37.24 per cubic meter Cost per ft. m \$30.23 Cost per Day \$910.29

Lost to formation0Dumped289Lost over Solids Control Equipment34Total to Sea323Volume Cuttings38.2

INTERVAL SUMMARY

Gypsum Polymer

SECTION 17¹/₂" Hole Spud Depth 323 m ft. m Q... Spud Date not drilled TD Depth not drilled TD Date not drilled Maximum Hole Deviation Drilling Days Total Days on Interval Interval Mud Cost \$23,722.88 Volume Built 238 m³ gyp polymer Volume Transferred to Interval 403 m³ Volume Salvaged 103 m³ kill mud Volume Lost to Formation and/or Dumped 367 m³ dumped Cost per Barrel \$65.25 per cubic meter Cost per ft. m Cost per Day

Lost to formation	0
Dumped	360
Lost over Solids Control Equipment	0
Total to Sea	360
Volume Cuttings	0

INTERVAL DISCUSSION

36" Hole to 257 m 30" Casing to 257 m

The Dyvi Stena was moved on location and spudded on 2 January 1986. Seabed was tagged at 158 m.

The 36" hole was drilled with seawater and hi vis pills. Returns were to the seabed. Approximately 8 m^3 of 100 viscosity mud were circulated on each connection.

The hole was circulated out with hi vis mud after reaching T.D. The hole was again filled with hi vis mud prior to running 30" casing. A total of 230 m³ of seawater/hi vis mud was used on this section.

Thirty inch casing was run and cemented without problems.

.....

INTERVAL DISCUSSION

26" Hole 157 to 323 m 20" Casing to 318 m

Drilling of the 26" section commenced on 5 January 1986. A 12 1/4" pilot hole was drilled to 528 m. The hole was plugged back to 325 m after gas shows at 338 m. The hole was underreamed to 26" to a depth of 323 m.

The hole was displaced with 1.36 SG mud prior to trip at T.D. A 26" bit check trip was made after pulling the riser and the hole again circulated out with 1.36 SG mud.

Two hundred thirty m^3 of 1.36 SG mud was used on this section. Material cost on this section was \$25,000 with Barite costs amounting to 85% of material costs.

Twenty inch casing was run and cemented as per program.

Shakers were equipped with 20 over 40 mesh screens. Desander and desilter were fitted with 120 mesh and 200 mesh screens respectively.

INTERVAL DISCUSSION

17¹/₂" Section

This section was not drilled. The wellhead guideposts were out of position while waiting to land the BOP stack. Swells of approximately 8 meters in height were recorded during this period.

The rig was moved 40 meters to respud this well.

Two hundred thirty eight cubic meters of Gyp polymer mud and 129 m³ of native mud was dumped in order to provide space for spud mud. One pit was required to provide seawater for drilling the 36" section. One additional pit was required to retain 103 m³ of kill mud for use in the 26" section should the need arise.

HORSK	PETR			•						•								•	Daily	y Material Usage
	SER	RVICESI	ノードー	erator	Sta	atoil		- <u></u>	•			_				34/1				- -
	ite	Bent.	Caustic	E C	['		[!	1		'		1	.'		Mud Made	Mud Lost	ral d	C	Cost	
Date 1986	Barite	Ber	Cau	Soda Ash	<u> </u>		L'	<u> </u>		ļ'	ļ	[!]	ļ		R R	폭그	цчщ	Daily	Cumulative	Remarks
Unit	MT	MT	25kg	g50kg	!		I'			!			 							<u>36" Hole</u>
02.01		29	9	9	!					'			.		315	_14	301	6632.00	6632.00	
03.02		16	8	10						'	. '	. 			240	206	335	3782.10	10414.10	
Totals		45	17	19						'				 	555	220	335		10414.10	
Progra	m 19	16	4	2	'		I'	<u> </u>		[]	. [· '	'	 	181				5303.90	
		Ļ'	ļ'		<u> </u>		I!			 '	. '	ļ!	'						18.76	Cost/m ³ (555)
		 '			'		I				'	. !	'							
		ļ!	 '				ا ^ا				Í'	. !	'				335		_(6284.60)	Transfer to 26"
		I'	ļ'		I!		I			'		ļ'	 '						4129.50	Interval Cost
		ļ!	 '		ļ!		I'			I'		!'	 '						41.72	Cost/m (99)
		I'	 '	<u> </u>	<u> </u>		I			ļ	ļ'	ļ	'							
		I'	ļ'	<u> </u>	Į!		¹]		'	ļ'	!	ļ'							
		Ļ'	ļ'		[]					ļ!	 '	<u> '</u>	Í'							
		I'	ļ'		!						l'	. !	!'		 					
		ا ــــــــــــــــــــــــــــــــــــ	 '		ļ		ا ^ا			ļ !	ļ '	ļ!								
		I'	 '		I!					I!	Į'	ا ــــــــــــــــــــــــــــــــــــ	ļ'	 						
		I'	 '		<u> </u>		ا ا			'	'	ļ!			[
		I'	. '		<u> </u> !		ا'				ļ '		'							
		I'	ļ'	ļļ	!		ا ا	<u> </u>		ļ	 '	ļ!	 '							
		I'	ļ'		<u> </u>		I'	<u> </u>		Į'	ļ'	ļ!	'							
		ļ!	 '							 '	ļ	ļ!	 '							
		I′	<u> </u>							'	ļ'	'	<u> </u> '							
		L'	<u> </u>				ļ!			<u> </u>	Ĺ'	!	<u> </u>							

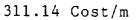
• •••

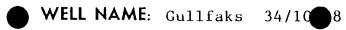
	D			erator	r St	atoil			·						Well	3/./	10-28		Daily	y Material Usage
Date 1986			Jope		Soda Ash 50 kg										1	<u> </u>	Total Mud		Cost Cumulative	26" Hole Remarks
03.01				<u>.</u>				//		·'					· ['		335		_10414.10	Transfer from 36"
04.01	91	!	2	_6	2	<u> '</u>	. '	. '	. '	_ ′				. '	80	0	415	8309,00	18723,10	
05.01	14	6	3	. '	2	10	.['	. '	.	. '	· '	. '		· ['	108	26	497	1659.45	20382.55	
06.01	13	7	7	4	-	'	<u> '</u>		'	. '	. '	.	·['	.['	75	66	506	2814.65	24385.20	
07.01	20	Ļ!	L'	8	1	15	 '	ļ!	. '	- '	 '	. '	 '	_ '	70	83	493	2206.80	26592.00	
08.01	99		ļ'	. '		!	20	. !	 '	· '	<u> </u> '	. '	. '	. ′	20	148	365	9240.00	35832.00	
Total	237	13	12	18	5	25	20	<u> </u> '	. '	_ _'	<u> '</u>	. '	. ′	<u> </u>	353	323_	365	31702.50	31702.50	
Progra	m125	85	21	0	11	0	0	ļ!	l'	<u> </u> '	. '	!'	<u> </u>	. '	1316	'	_	30347.50	30347.50	
			I!	. !			!'	ļ!	·['	<u> '</u>	. '	<u> '</u>	 '	l'	. '	 '			46.08	Cost/m ³ (688)
	,]		I!	<u> </u> '			·['	<u> </u> !	1'	<u> </u> '	 '	. '	<u> </u>	<u> </u>	<u> </u> '	! ′				
		[]	<u>ا</u> ــــــــــــــــــــــــــــــــــــ	'	ļ!	!	 '	<u> </u> !	I'	<u> '</u>	ļ'	. '	. '	 ′	. <u> </u> '	 '	365		(16819.20)	Transfer to 17½"
	·]		L'	!!			ļ!		!'	<u> </u> '	<u> </u> '	<u> '</u>	ļ'	<u> </u>	<u> '</u>	.l′	-		14883.30	Interval Cost
			I'	<u> '</u>			ا ^ا		Į′	<u> '</u>	. '	ļ'	I'	l'	. '	. ′	-		225.51	Cost/m (66)
			I'	<u> </u> '	<u> </u> !		<u> </u> !		·!'	<u> </u>	l'	'	. '	!'	.['	.[′				
			I!	<u> </u> '			<u> </u> '		<u> </u> '	<u> </u>	l'	<u> '</u>	<u> </u> '	'	<u> </u>					
				<u> </u>			<u> </u>		<u> </u>	<u> </u>	<u> </u>	'	<u> </u>	<u> </u>	'	<u> </u>				
				!	[]		[]		<u> </u> '	<u> </u>	<u> </u>	'	['	Í'	['	ĺ′				
			\square	['	[]		<u> </u>	!	<u> </u>	<u> </u>	<u> </u>	<u> </u> '	<u> </u>	['	['	′				
				/					′	<u> </u>	/'		'	<u> </u>	<u> </u>	l′				
			[]						ĺ′	[]	['	['	['	['	Ē'	ĺ′				
									1	[]	[]		1'		1'	1′				
			<u> </u>				1		1	[]	[]	'	1	1	1	1				
				<u> </u> '					1'	[]	[]	1		<u> </u>		1'				

	PETI																			Daily	y Material Usage
		VICES 1		rator		State		- <u></u>		<u></u>	r 69				Well	34/1	0-2	28		,	
:	Barite MT	Bent. MT	isti kg	k EV	Dextrid 50 lb	Drispac 50 1b	b B C C C C C C C C C C C C C C C C C C	bsum kg	Bicarb 50 kg	XC Polymer 25 kg	k g	en c			le	l st	[a]	_	Co	ost	17½" Hole
Date 1986	Baj MT	MT Bei	Cai 25	<u>25</u>	50 EXI	ΞΩ Ω	Red	<u>8</u> 9	50 Å	N N N N N N	52 E	Soda Ash			Mud Made	Mud Lost	Ц Ц		Daily	Cumulative	Remarks
08.01																	36	5 16	5819.20	35832.00	Transfer from 26"
09.01			7		75	_26_	26	145	4		1				_214	111	46	8 9	9429.42	45261,42	······
10.01	_20														0	_29_	43	9 1	800,00	47061.42	
11.01	8			i											0	0	43	9	720.00	47781.42	······
12.01		3	4	1		1		_40		7	2				24	0	46	3 3	3608.17	51389.59	
13.01															0	0	46	3		51389.59	
14.01															0	0	46	3	0	51389.59	
15.01																360	10	3	0	51389.59	<u> </u>
Totals	28	3		1	75	_27_	_26_	185	4	7	3	0			238					32325.22	
Program	68	0	199	0	384	119	80	788	_0	69	0	27								74007.48	
																				53.61	Cost/m ³ (603)
										<u>_</u>							10	3		(5521.83)	Kill mud retained
																				26803.39	Interval Cost
																					· · · · · · · · · · · · · · · · · · ·
															_,,	<u></u>					
													 								
									 	L											

TOTAL MATERIAL CONSUMPTION

MATERIAL


PACKAGING

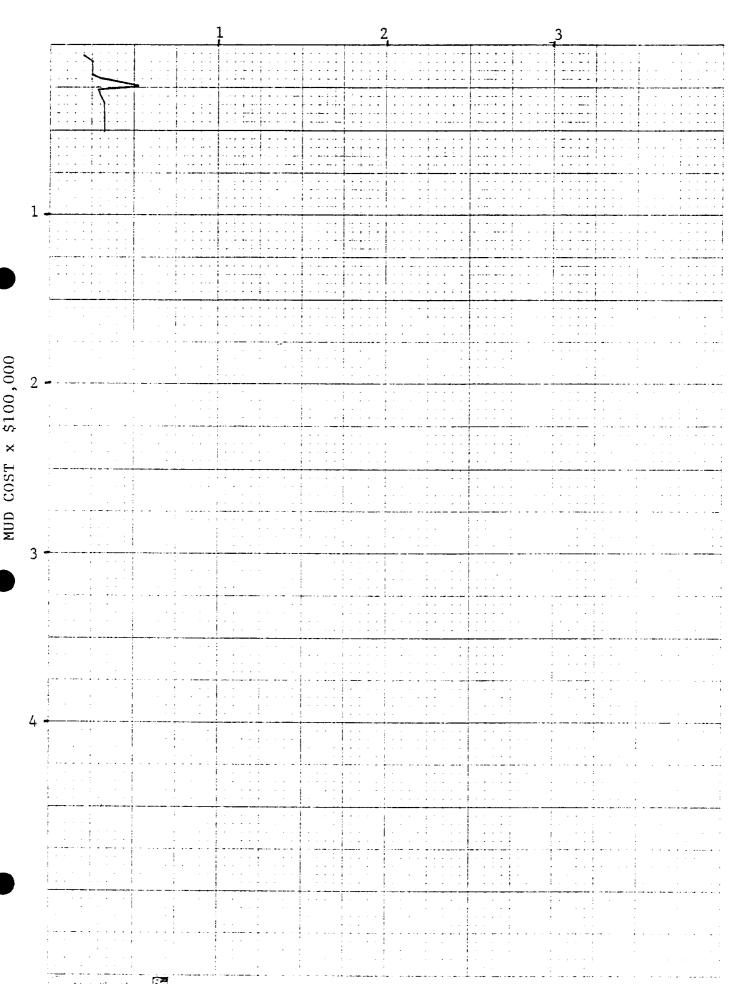

QUANTITY

Barite	MT	265
Bentonite	MT	61
Borrewell	25 kg	18
Caustic Soda	25 kg	40
Soda Ash	50 kg	24
CMC LV	25 kg	1
Instavis	25 kg	3
Sodium Bicarbonate	50 kg	29
Dextrid	50 lb	75
Drispac Regular	50 lb	27
Drispac Superlo	50 lb	26
Gypsum	40 kg	185
XC Polymer	25 kg	7

Section Costs

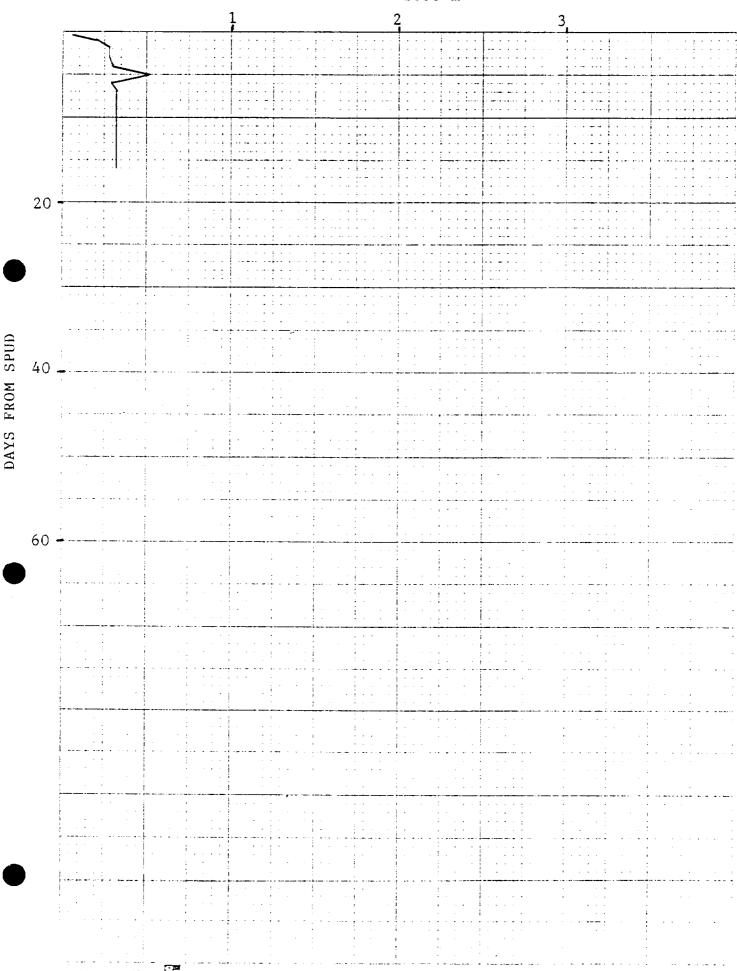
Interval	<u>m ³</u>	<u> </u>	Cost
36"	220	99	4,129.50
26"	323	66	14,883.30
17 ¹ / ₂ "	360	0	26,803.39
kill mud	<u>103</u>		5,521.83
Totals	1006	165	51,338.02
			, 51.03 Cost/m³

Press History


MUD PROPERTY RECAP

DATE	DEPTH	DENSITY	VISC- OSITY	FILT	RATE	нт/нр	filt	pН	[RHEO	LOGY		FIL	TRAJ	E AN	ALYS	S	RETO	RT ANA	LYSIS	CEC		OTHER	
	feet	PPG/ Spct/			Cake	0	500psi		PV	ΥP	10"	10'	CI	Ca	Pf	Mí	Pm	Oil	Water	Corr. Solids	ррв			
1986	metres	SG	secs	ccs	17/mm	ccs	32/mm		сp	1bs/10	Oft ² -gr	ne/100	mg/litre	ppm				%	%		Bent. Eq.	SAND		
02.01	194	1.04	100								Spi	d Mu	d											
03.01	257	1.04	100								Spi	d Mu	d											
04.01	257	1.11	44	NC	3			9.6	11	26	16	26	5000	180					95	5				
05.01	270	1.12	47	NC	3			10.3	11	34	25	28	9000	240					94	6				
05.01	295	1.11	41	NC	3			9.9	8	29	20	24	10000	280					94	6				
06.01	341	1.11	41	NC	3			10.2	8	35	16	22	11000	200					94	6		TR		
06.01		1.11	43	NC	3			10.0	8	37	21	24	12000	240					94	6		1/4		
06.01	528	1.12	40	NC	3			9.1	6	24	17	21	18000	280					94	6		1/4		
07.01	528	1.12	42	NC	3			9.0	7	23	16	26	13000	160					94	6		1/4		
07.01	290	1.11	41	NC	3			10.7	6	24	16	23	14000	560					94	6		1/4		
08.01	257	1.36	44	NC	3			10.5	8	22	18	24	14000	600					94	6		1/4		
09.01	257	1.11	44	NC	3			9.6	7	19	16	23	14000	280					94	6		1/4		
10.01	257	1.11	43	NC	3			9.6	7	19	16	23	14000	280					94	6		1/4		
11.01	257	1.11	43	NC	3			9.6	7	19	16	23	14000	280					94	6		1/4		
12.01	257	1.11	40	NC	3			9.1	13	21	17	26	16000	640					94	6		1/4		
13.01	323	1.11	40	NC	3			9.1	13	21	17	26	16000	640					94	6		1/4		
14.01	323	1.12	40	NC				8.9	13	19	16	24	15000	600					94	6		1/4		
15.01						Dum	p ar	d cl	ean	muđ	pit	s												

Statoil Dyvi Stena 34/10-28


DEPTH x 1000 m

Statoil Dyvi Stena 34/10-28

DEPTH x 1000 m

-

-

3.11 EQUIPMENT FAILURES

.

• •

•

. .

EQUIPMENT FAILURE REPORT

- 04.01 Power black-out due to electrical overload.
- 04.01 Unable to torque up 4 dogs on the pin connector to full travel. Changed out 4 dogs and the bolts.
- 04.01 Did not get function test on port side diverter valve.
- 05.01 Had power black-out.
- 05.01 Anadrill gas detection system broke down. It was all replaced.
- 09.01 The 20" casing rotated when attempting to back out the running tool after cementing. The McEvoy 20" wellhead was not equipped with anti-rotation pin as it was supposed to. When the cement was set up the running tool was easily backed out.
- 13.01 One transponder on the BOP was not working.

4. MARINE REPORT

4.1 WEATHER AND ANCHOR TENSION

4

.

.

4.1 Weather and anchor tension 34/10-28

The well 34/10-28 was drilled in the period from 31.12.85 to 16.01.86.

There was a total of 67.5 hours downtime due to bad weather, which is 18.2% of the total time spent on the well.

The main wind and wave direction was from north east.

The maximum reported wind speed was 28.7 m/s from SSE, and the maximum reported wave height was 5.0 m from SSE.

The maximum experienced anchor tension was 145 tons on anchor no. 7.

4.2 LOCATION WEATHER DATA SUMMARY

.

WELL: 34/10-28	RIG:	Stena
TIME PERIOD: FROM 1/1	то <u>16/1</u>	
READINGS PR. MONTH:One	reading per day	

WIND

m/sec. dir.	0 – 5	5 – 10	10 – 15	15 – 20	20 – 25	25 – 30	> 30	total
N								
NNE				2				2
NE	1	2						3
ENE								
E		1						1
		1						1
SE		1	1					2
SSE			1			1		2
S								
SSW						1		1
SW		1		1				2
WSW						<u> </u>		
W								
WNW			1					1
NW				1				1
NNW								
total	1	6	3	4		2		16 16

.

VEVE

VE								
height (m) dir.	0 – 1	1 – 2	2 – 3	3 – 5	5 - 7	7 – 10	> 10	total
N								
NNE			1	1				2
NE		1	2					3
ENE								
E	1		_		······································			1
ESE		1						1
SE	2							2
SSE			1	1	_			2
S								
SSW				1				1
SW		1	1					2
WSW								
W								
W				1				1
NW				1				1
NNW								
total	3	3	5	5				16 16

4.3 NAVIGATION REPORT

.

.

NAVIGATION REPORT

RIG MOVE OF "DYVI STENA" TO WELL 34/10-28

- 1. Final position (Datum ED50) Geographical_coordinates: Lat. 61[°] 06' 31.99" N Lon. 02[°] 15' 23.72" E UTM_coordinates_(UTM-zone_31, cm_3[°]E): Northing 6 775 304 Easting 459 928 Accuracy: +/- 5 meter Rig heading: 315[°] Deviation from intended postion: 9 m - 310[°]
- 2. Observed Decca Main Chain Readings:

Chain	:	Vestlandet OE
Red	:	1I 03.34
Green	:	2D 42.60
Purple	:	1B 68.94

3. <u>Navigation/Position Method</u>

a) Navigation

Micro-fix positioning system interfaced to a HP 9845 computer.

Contractor: A/S Geoteam, Oslo Personell : Dag Høgvard and Frank Røv

b) Positioning

MX 1502 satellite positioning system. Translocation against fixed point at Eigeberg near Stavanger

Contractor: A/S Geoteam, Oslo Personell : Dag Høgvard

4. Duration of Rig Move

Equipment onboard	:	26	Dec.			
Personell onboard	:	31	Dec.	at	08.30	hours
Rig leaving location 6406/6-1	:	31	Dec.	at	04.30	hours
Start circling to location	:	1	Jan.	at	21.40	hours
2 km from location	:	1	Jan.	at	.23.25	hours
First anchor (no. 4) on bottom	:	1	Jan.	at	23.51	hours
Last ancor (no. 7) on bottom	:	2	Jan.	at	08.20	hours
All anchors pretensioned						
up to 100 tons	:	2	Jan.	at	12.50	hours
On location ready to spud	:	2	Jan.	at.	15.30	hours

5. <u>Techniques/Problems</u>

The operation was performed according to Statoil's procedures without any navigational problems.

The final position of the rig was fixed by satellite using the translocation method. A geodetic point onshore at Eigeberg near Stavanger was used for the fixed point satellite receiver.

Micro-fix position is 3 m in direction 120° from final position.

WELLSITE SAMPLE DESCRIPTION

WELL:	34/10-28	K.B.E.:	25 m
PROSPECT :	GULLFAKS	HOLE SIZE:	12 1/4"
EA:	NORTH SEA	DATE:	05.01.1986
COUNTRY :	NORWAY		
COMPANY :	STATOIL/SAGA/N.HYDRO		
GEOLOGIST:	BJERKENES/HOVDEN		

.

DEPTH	LI	TH.% LITHOLOGIC DESCRIPTION	Shows&Remarks
260	100	w/lith grns, fn-v crs, ang-subang, glacial debris?	No shows contam by cmt
	TR TR		Ŧr
270		CLAY: A/A SD: A/A Shell frags and forams	11
•	100 TR TR	CLAY: A/A SD: A/A Shell frags and forams	11
290	100 TR TR TR	CLAY: A/A SD: A/A Shell frags Mica	1 7
300	100 TR TR	CLAY: A/A SD: A/A Shell frags	17
310	100 TR TR	CLAY: A/A SD: A/A Shell frags and forams	n
320 ●	100 TR TR	CLAY: A/A SD: A/A Shell frags and forams	rt.
330		CLAY: A/A SD: A/A, mostly subrnd-rnd Shell frags and forams	18
340	100 TR TR	CLAY: A/A, occ grdng v sdy clay i/p SD: A/A Shell frags and forams	**
350	100 TR TR	CLAY: A/A SD: A/A Shell frags and forams	"

WELLSITE SAMPLE DESCRIPTION

WELL:	34/10-28
PROSPECT:	GULLFAKS
EA:	NORTH SEA
COUNTRY :	NORWAY
COMPANY :	STATOIL/SAGA/N.HYDRO
	BJERKENES/HOVDEN

TR Pyr mass microxl TR Shell frags

.

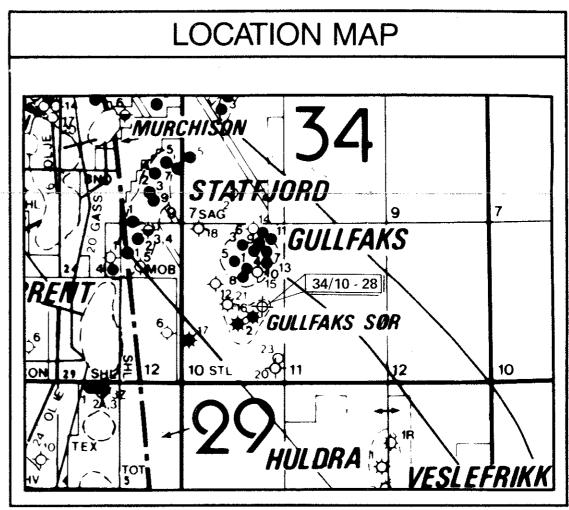
DEPTH	LI	TH.% LITHOLOGIC DESCRIPTION	Shows&Remarks
360	100 TR TR	SD: A/A	
370	100 TR TR	prtly w/lith grns SD: clr qtz, fn-med, poor-fair srtd, subrnd-subang	No shows
۲		CLAY: A/A SD: A/A Shell frags	sl cont by cmt
390		CLAY: A/A SD: A/A, mod srtd Shell frags and forams	17
400		CLAY: A/A SD: A/A Shell frags	11
410	100 TR TR	CLAY: A/A SD: A/A, fn-crs poor-fair srtd Shell frags	T
420	100 TR TR	CLAY: A/A SD: A/A, fn-med, mod srtd Shell frags	"
430	100 TR TR	CLAY: A/A SD: A/A Shell frags and forams	T
440	100 TR TR	CLAY: A/A SD: A/A Shell frags and forams	**
450	100 TR	CLAY: A/A, cont lith grns SD: A/A	71

K.B.E.: 25 m HOLE SIZE: 12 1/4" DATE: 05.01.1986

WELLSITE SAMPLE DESCRIPTION

WELL:	34/10-28
PROSPECT:	GULLFAKS
A EA:	NORTH SEA
COUNTRY:	NORWAY
COMPANY:	STATOIL/SAGA/N.HYDRO
GEOLOGIST:	BJERKENES/HOVDEN

K.B.E.:	25	m
HOLE SIZE:	12	1/4"
DATE:	05.	.01.1986


DEPTH	LI	TH. % LITHOLOGIC DESCRIPTION	Shows&Remarks
460	100 TR TR	CLAY: A/A SD: clr, mlky qtz, occ lith grns f-v crs, subang, occ ang, rnd, poor srtd Shell frags	19
470	100 TR	CLAY: A/A SD: A/A Shell frags	. n .
480	100	CLAY: A/A SD: A/A Shell frags	W
490	100 TR TR TR	CLAY: med gry, sft, amor, mod calc, occ w/ lith grns Clr-mlky qtz, lith grns, f-v crs, subang- rnd, dom in sub rnd, prtly as lith grns PYR: mass, microxln Shell frags	Sl cont cmt No shows
500		CLAY: A/A SD: A/A, domin f-med (shell frags, forams) Shell frags and forams	"
510 ·		CLAY: A/A SD: A/A Shell frags	11 .
520	100 TR TR	CLAY: A/A SD: A/A Shell frags	**
528 (B.U.)	100 TR TR	CLAY: A/A SD: A/A Shell frags	17

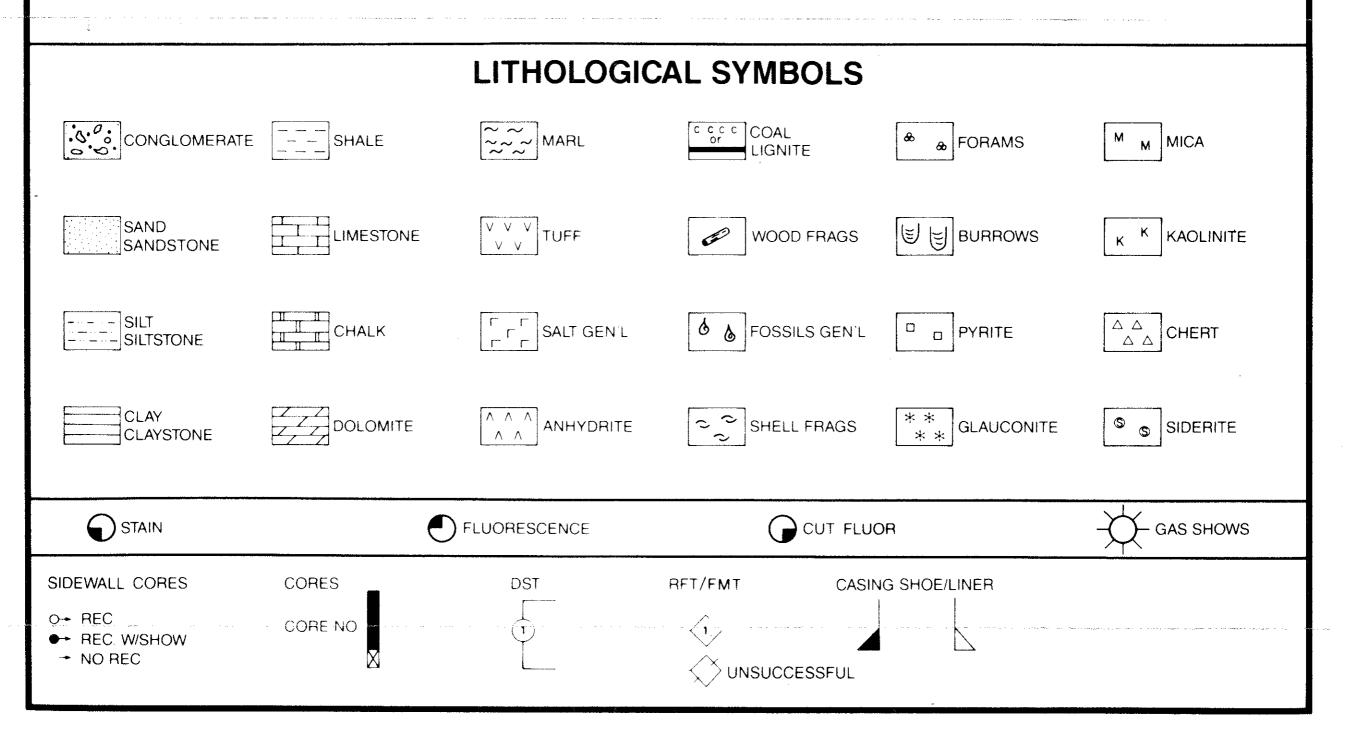
Statoil PARTNERS NORSK HYDRO, SAGA PETROLEUM

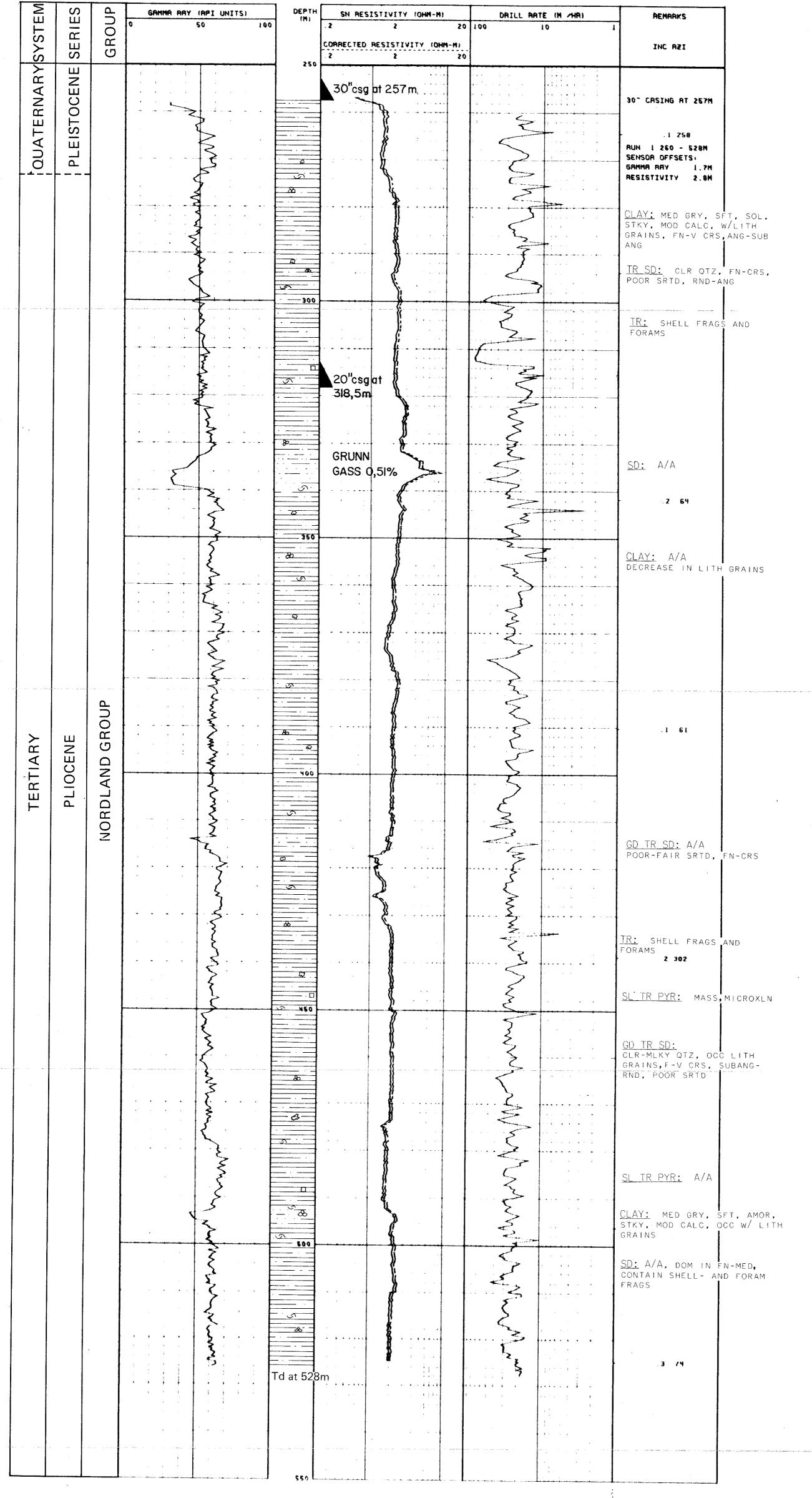
34/10-28 COMPLETION LOG Scale 1:500

AREA: NORTH SEA LICENCE: PL 050 COORDINATES: 61° 06' 31,99''N 02° 15' 23,72''E

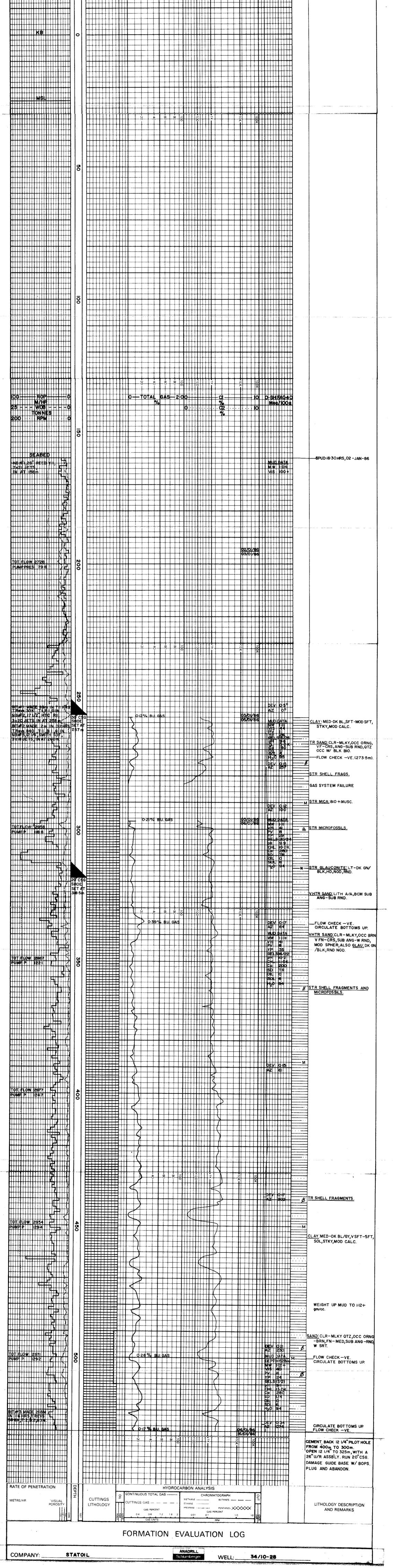
K.B.: 25m WATER DEPTH: 133m TOTAL DEPTH: 528m DEEPEST FORM. PEN.: NORDLAND GP. SPUD DATE: 02.01.86 RIG RELEASE DATE: 16.01.86 WELL STATUS: PLUGGED & ABANDONED RIG: DYVI STENA CONTRACTOR: DYVI OFFSHORE GEOLOGISTS: S. BJERKENES, Ø.HOVDEN

GULLFAKS SOUTH


PREPARED BY: K. J. KORNSTAD DATE: 02.06.86


CASING	DATA:	LEAK OFF TES	STS: VELOCITY SURVEY:
	257m 318,5m	· · · · · · · · · · · · · · · · · · ·	NO VELOCITY SURVEY WAS TAKEN
	····· .	LOGS RUN	CONTRACTOR:

COMMENTS:


NO WIRELINE LOGS WERE RUN IN THE HOLE

EXLOG'S DLWD WAS RUN IN THE INTERVAL 257m – 524m. DUE TO THE LACK OF WIRELINE LOGS THE DLWD – LOG IS USED FOR THE COMPLETION LOG.

		NADRILL	
		FORMATION LOG	
COMPANY	STATOIL		
WELL	34/10-28	LOCATION GULLFAKS SOU	ITH ALPHA
RIG NAMED	YVI STENA	DATE COMPLETED I6- JA	N-86
DATE SPUDDED	02-JAN-86	CASING RECORD 30" IG	50m TO 257m
TOTAL DEPTH	528 m	20" 16	0m TO 318.5m
	A.RUTHERFORD.		TO
UNIT NO	OLU-FB-55		TO
······································	LE	GEND	
SAND	* GL AUCONITE	Software	
	FORMATION	EVALUATION LOG	
ATE OF PENETRATION		CARBON ANALYSIS CHROMATOGRAPH METHANE ETHANE ORDERATE CONTINUE CO	LITHOLOGY DESCRIPTION AND REMARKS

ه رو^{نه} . محاصد دخم

.