Denne rapport tilhører

**STATOIL** 

nr. 2

# L&U DOK. SENTER

L. NR. 20088370022

KODE Well 31/2-9

Returneres etter bruk

RESERVOIR FLUID STUDY

for

A/S Norske Shell Exploration & Production

Well: 31/2-9

North Sea, Norway.

# CORE LABORATORIES UK LTD. Petroleum Reservoir Engineering ABERDEEN, SCOTLAND

### RESERVOIR FLUID STUDY

for

A/S Norske Shell Exploration & Production

Well: 31/2-9

North Sea, Norway.

Petroleum Reservoir Engineering ABERDEEN, SCOTLAND

1st February 1983

A/S Norske Shell Exploration & Production Gamle Forusvei 43 P.O. Box 10 N-4033 Forus NORWAY

Subject: Reservoir Fluid Study

Well: 31/2-9
Field: Troll

North Sea, Norway.

Our File: RFLA 820292

Attention: Mr. J. C. Jolly.

Gentlemen.

On the 6th June 1982, samples of separator gas and liquid were collected from the subject well. These samples were submitted to our Aberdeen laboratory for use in a reservoir fluid study, the results of which are presented in the following report.

On arrival in the laboratory the hydrocarbon compositions of the gas samples were determined by gas chromatography, and the gas in cylinder number A4796 was found to be contaminated. The composition of the gas from cylinder number A3908 is presented on page two of this report. Stock tank liquid from the RFT provided and gas were recombined to produce a saturation pressure of 2280 psig at 154°F as requested, and the resulting fluid was used for the entire study.

The hydrocarbon composition of the fluid to heptanes plus was determined by low temperature fractional distillation. This composition in terms of both mol and weight percent may be found on page three of this report. The hydrocarbon composition to eicosanes plus will be reported shortly in a supplementary report.

A portion of the reservoir fluid was placed in a high pressure visual cell and thermally expanded to the reservoir temperature of 154°F. During a constant composition expansion at this temperature, a saturation pressure of 2280 psig was observed. The results of the pressure-volume relations may be found on page five, with the associated volumetric data for the undersaturated fluid presented on page four.

A large volume of reservoir fluid was then subjected to a differential vaporisation at 154°F, resulting in the liberation of a total of 291 standard cubic feet of gas per barrel of residual oil, with an associated relative volume of 1.146 barrels of saturated fluid per barrel of residual oil. At several pressure levels below the observed saturation pressure, oil density, gas gravity and gas compressibility factor were monitored. These data are tabulated on page six, and graphically represented on pages eleven and twelve.

The viscosity of the liquid phase was measured in a rolling ball viscosimeter at the reservoir temperature of 154°F. These measurements were made over a wide range of pressures, from above saturation pressure to atmospheric pressure, and showed a minimum viscosity of 1.704 centipoise at saturation pressure, and a maximum of 3.666 centipoise at atmospheric pressure. This data, together with the calculated gas viscosity is presented on page seven, and graphically represented on page thirteen.

Continued Over/.....

At conditions specified by A/S Norske Shell Exploration & Production, a series of flash separation tests were performed in the laboratory. The factors and data derived from these tests may be found on page eight.

On the first separator test at both primary and secondary stages, the gas evolved was collected and analysed for hydrocarbon composition to undecanes plus by gas chromatography. These compositions are presented on page nine of this report.

It was requested that we analyse the residual liquid from the 450 psig flash separation test to determine pour point, cloud point, wax content and melting point of the wax. These results may be found on page ten.

It has been a pleasure to be of service to A/S Norske Shell Exploration & Production. Should any questions arise concerning data presented in this report, or if we may be of assistance in any metter, please do not hesitate to contact us.

Very truly yours

Core Laboratories UK Limited Reservoir Fluid Analysis

LKS/TGB/stb 10cc/Addressee Les. K. Sebborn Manager - RFL Aberdeen

Petroleum Reservoir Engineering ABERDEEN, SCOTLAND

|                                          |                  | Page_                                  | 11                                    | _of         | 13            |       |
|------------------------------------------|------------------|----------------------------------------|---------------------------------------|-------------|---------------|-------|
|                                          |                  | File_                                  | ŘFL                                   | A 82029     | 2             |       |
| Company A/S Norske Shell Expl. & Prod. I | Date Sampi       | led <u>6th</u>                         | June 1                                | 982         |               |       |
| Well 31/2-9                              | County           | Nort                                   | h Sea                                 |             |               |       |
| Field Troll S                            | State            | Norv                                   | ay                                    | <del></del> |               |       |
| FORMATION CHA                            | ARACTERIS        | rics                                   |                                       |             |               |       |
| Formation Name                           | -                |                                        |                                       |             |               |       |
| Date First Well Completed                | -                | <del></del>                            |                                       |             | 19            |       |
| Original Reservoir Pressure              | _                | F                                      | SIG @_                                |             |               | М.    |
| Original Produced Gas-Liquid Ratio       | -                | <del></del>                            |                                       |             | SCF/          |       |
| Production Rate                          | -                | <del></del>                            |                                       | . <u> </u>  | Bbls/         |       |
| Separator Pressure and Temperature       | -                | <u>-</u>                               | SIG                                   |             |               | °F.   |
| Liquid Gravity at 60°F.                  | -                |                                        |                                       |             |               | API   |
| Datum                                    | A CTURED T COULT | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |                                       |             | . Sub         | sea   |
| WELL CHAR                                | ACTERISTI        | R.K.B.                                 |                                       |             |               |       |
| Total Depth                              |                  | K•K•D•                                 |                                       |             |               | М.    |
| Producing Interval                       | -                | 1584-1590                              | 5*                                    |             |               | _M.   |
| Tubing Size and Depth                    | =                | 3"VAM & 4                              |                                       |             |               | -м.   |
| Open Flow Potential                      | -                | J VA1 & 4                              | 2 1110 6                              |             | MSCF/         |       |
| Last Reservoir Pressure                  | •                |                                        | PSIG @                                |             | - 1.501 /     | M.    |
| Date                                     |                  | 6th June                               |                                       |             | 1982          |       |
| Reservoir Temperature                    | •                | 154                                    | °F. 6                                 | 1576.8      |               | M.    |
| Status of Well                           | •                |                                        | _ ` `                                 |             |               | _     |
| Pressure Gauge                           | •                | ····                                   | · · · · · · · · · · · · · · · · · · · |             |               |       |
| SAMPLING                                 | CONDITION        | S                                      |                                       |             |               |       |
| Wellhead Tubing Pressure                 |                  | 223                                    |                                       |             | F             | SIG   |
| Flowing Bottom Hole Pressure             | •                | _                                      |                                       |             | F             | SIG   |
| Primary Separator Pressure               |                  | 92                                     |                                       |             | F             | SIG   |
| Primary Separator Temperature            |                  | 71                                     |                                       |             |               | °F.   |
| Secondary Separator Pressure             |                  |                                        |                                       |             | F             | SIG   |
| Secondary Separator Temperature          |                  |                                        | ·                                     |             |               | °F.   |
| Field Stock Tank Liquid Gravity          |                  |                                        |                                       |             | c @ 60        |       |
| Primary Separator Gas Production Rate    |                  | ·                                      |                                       | N           | MSCF/         | 'Day  |
| Pressure Base 14.73                      |                  |                                        |                                       |             |               |       |
| Temperature Base 60                      | °F.              |                                        |                                       |             |               |       |
| Compressibility Factor (Fpv) 1.009       |                  |                                        |                                       |             |               |       |
| Gas Gravity (Laboratory) 0.640           |                  |                                        |                                       |             |               |       |
| Gas Gravity Factor $(F_0)$ 1.250         |                  |                                        |                                       |             | Dhla          | /Da   |
| Primary Sep Liquid Production Rate @ 71° |                  |                                        |                                       |             | _Bbls/        | _     |
|                                          | Ratio            |                                        |                                       | ıd          | SCF/<br>ols/M |       |
|                                          | r                | Flopetrol                              | <del></del>                           | BI          | ) T () (, II, | - DCL |
| Sampled by                               |                  | TOPECTOI                               | <del></del>                           | <del></del> |               |       |

REMARKS: \*Milled Out Section.

These analyses, opinions or interpretations are based on observations and material supplied by the client to whom, and for whose exclusive and confidential use, this report is made. The interpretations or opinions expressed represent the best judgement of Core Laboratories, Inc. (all errors and omissions excepted): but Core Laboratories, Inc. and its officers and employees, assume no responsibility and make no warranty or representations as to the productivity, proper operation, or profitableness of any oil, gas or other mineral well or sand in connection with which such report is used or relied upon.

The state of the s

Petroleum Reservoir Engineering ABERDEEN, SCOTLAND

|                    |            |                           |             | Page      | 2            | _of  | 13                                    |
|--------------------|------------|---------------------------|-------------|-----------|--------------|------|---------------------------------------|
|                    |            |                           |             | File      | RFL          | 8202 | 292                                   |
| Company            | A/S Nors   | ske Shell Expl. & Prod.   | _ Formation |           | <del>,</del> |      | · · · · · · · · · · · · · · · · · · · |
| Well               | 31/2-9     |                           | _ County    | North     | Sea          |      |                                       |
| Field_             | Troll      |                           | _ State     | Norway    | ,<br>        |      |                                       |
|                    |            | HYDROCARBON ANALYSIS OF S | EPARATOR GA | S SAMPLE* |              |      |                                       |
| COMPONE            | NT         | MOL PER                   | CENT        |           | C            | GPM  |                                       |
|                    |            |                           |             |           |              |      |                                       |
| Hydroge            | en Sulfide | e NIL                     | ı           |           |              |      |                                       |
| Carbon             | Dioxide    | 1.22                      |             |           |              |      |                                       |
| Nitroge            |            | 0.80                      |             |           |              |      |                                       |
| Methane            | <u>:</u>   | 88.06                     |             |           |              |      |                                       |
| Ethane             |            | 7.40                      |             |           | _            |      |                                       |
| Propane            |            | 1.23                      |             |           |              | 338  |                                       |
| iso-But            |            | 0.72                      |             |           |              | 236  |                                       |
| n-Butar            |            | 0.13                      |             |           |              | 041  |                                       |
| iso-Per            |            | 0.12<br>0.02              |             |           |              | .044 |                                       |
| n-Penta            |            | 0.15                      |             |           |              | .061 |                                       |
| Hexanes<br>Heptane |            | 0.15                      |             |           |              | .068 |                                       |
| neprane            | sa bras    | 100.00                    |             |           |              | 795  |                                       |

Calculated gas gravity (air = 1.000) = 0.640

Calculated gross heating value = 1103 BTU per cubic foot of dry gas at 14.73 psia and 60°F.

Collected at 92 psig and 71°F.

\* Cylinder Number: A3908.

Petroleum Reservoir Engineering

### ABERDEEN, SCOTLAND

|         |                                |            | Page                                  | 3    | _of   | 13 |  |
|---------|--------------------------------|------------|---------------------------------------|------|-------|----|--|
|         |                                |            | File                                  | RFLA | 82029 | 2  |  |
| Company | A/S Norske Shell Expl. & Prod. | Formation_ | · · · · · · · · · · · · · · · · · · · |      |       |    |  |
| Well    | 31/2-9                         | County     | North                                 | Sea  |       |    |  |
| Field   | Troll                          | State      | Norway                                | Y    |       |    |  |

### HYDROCARBON ANALYSIS OF RESERVOIR FLUID SAMPLE

| COMPONENT        | MOL<br>PERCENT | WEIGHT<br>PERCENT | DENSITY | API  | MOL<br>WEIGHT |
|------------------|----------------|-------------------|---------|------|---------------|
|                  |                |                   |         |      |               |
| Hydrogen Sulfide | NIL            | NIL               |         |      |               |
| Carbon Dioxide   | 0.48           | 0.13              |         |      |               |
| Nitrogen         | 0.79           | 0.14              |         |      |               |
| Methane          | 30.21          | 3.04              |         |      |               |
| Ethane           | 3.51           | 0.66              |         |      |               |
| Propane          | 0.79           | 0.22              |         |      |               |
| iso-Butane       | 0.91           | 0.33              |         |      |               |
| n-Butane         | 0.22           | 0.08              |         |      |               |
| iso-Pentane      | 0.38           | 0.17              |         |      |               |
| n-Pentane        | 0.11           | 0.05              |         |      |               |
| Hexanes          | 0.43           | 0.23              |         |      |               |
| Heptanes plus    | 62.17          | 94.95             | 0.8833  | 28.5 | 244           |
|                  | 100.00         | 100.00            |         |      |               |

· · · ·

Petroleum Reservoir Engineering ABERDEEN, SCOTLAND

| Page | 4   | _of    | 13 |   |
|------|-----|--------|----|---|
| File | RFL | A 8202 | 92 | - |

31/2-9

2280 PSIG @ 154 °F.

Well

### VOLUMETRIC DATA OF RESERVOIR FLUID SAMPLE

2. Specific volume at saturation pressure: ft  $^3$ /lb 0.01979 @ 154 °F.

3. Thermal expansion of saturated oil @ 5000 PSIG = 0.01979 @ 0.01979 @ 0.01979 @ 0.01979 PSIG = 0.01979 @ 0.01979 PSIG = 0.01979 PSI

4. Compressibility of saturated oil @ reservoir temperature: Vol/Vol/PSI:

Saturation pressure (bubble-point pressure)

From 5000 PSIG to 4000 PSIG =  $5.66 \times 10-6$ From 4000 PSIG to 3000 PSIG =  $6.23 \times 10-6$ From 3000 PSIG to 2280 PSIG =  $6.81 \times 10-6$ 

1 · 2 · 1

Petroleum Reservoir Engineering ABERDEEN, SCOTLAND

| Page | 5   | of     | 13 |   |
|------|-----|--------|----|---|
| File | RFL | A 8202 | 92 | _ |
| Well | 13/ | 2-9    |    |   |

### PRESSURE-VOLUME RELATIONS AT 154°F.

| Pressure        | Relative  | Y           |
|-----------------|-----------|-------------|
| PSIG            | Volume(1) | Function(2) |
|                 |           |             |
| 5000            | 0.9833    |             |
| 4000            | 0.9889    |             |
| 3000            | 0.9951    |             |
| 2700            | 0.9971    |             |
| 2600            | 0.9978    |             |
| 2500            | 0.9985    | •           |
| 2400            | 0.9992    |             |
| 2300            | 0.9999    |             |
| 2280 Saturation | 1.0000    |             |
| Pressure        |           |             |
| 2256            | 1.0020    | 5.322       |
| 2239            | 1.0034    | 5.303       |
| 2222            | 1.0049    | 5.295       |
| 2206            | 1.0063    | 5.280       |
| 2160            | 1.0106    | 5.228       |
| 2061            | 1.0206    | 5.132       |
| 1985            | 1.0292    | 5.059       |
| 1829            | 1.0499    | 4.903       |
| 1651            | 1.0799    | 4.726       |
| 1463            | 1.1217    | 4.541       |
| 1263            | 1.1832    | 4.343       |
| 1118            | 1.2442    | 4.200       |
| - 970           | 1.3278    | 4.057       |
| 860             | 1.4115    | 3.944       |
| 735             | 1.5387    | 3.824       |
| 620             | 1.7062    | 3.702       |
| 52 <b>0</b>     | 1.9125    | 3.605       |
| 395             | 2.3211    | 3.480       |
| 285             | 2.9692    | 3.377       |
| 185             | 4.1936    | 3.280       |

(2) Y Function = (Psat-P) (Pabs) (V/Vsat-1)

<sup>(1)</sup> Relative Volume: V/Vsat is barrels at indicated pressure per barrel at saturation pressure.

Petroleum Reservoir Engineering ABERDEEN, SCOTLAND

13 RFLA 820292 of 9 Page\_ File

31/2-9

We]]

DIFFERENTIAL VAPORISATION AT 154°F.

| al                      |           |        |         |         |         |         |         |         |         |         |         |        |     |
|-------------------------|-----------|--------|---------|---------|---------|---------|---------|---------|---------|---------|---------|--------|-----|
| Incremental<br>Gas      | Gravity   |        | 0.767   | 0.717   | 9.676   | 0.644   | 0.627   | 0.630   | 0.653   | 0.671   | 669*0   | 0.940  |     |
| Gas Formation<br>Volume | Factor(4) |        | 0.00672 | 0.00813 | 06600.0 | 0.01261 | 0.01718 | 0.02636 | 0.05323 | 0.07887 | 0.14928 |        |     |
| Deviation<br>Factor     | 2         |        | 0.836   | 0.848   | 0.862   | 0.881   | 0.904   | 0.932   | 0.964   | 0.975   | 0.987   |        |     |
| Oil<br>Density          | gm/cc     | 0.8097 | 0.8112  | 0.8159  | 0.8200  | 0.8241  | 0.8287  | 0.8338  | 0.8396  | 0.8418  | 0.8443  | 0.8489 |     |
| Relative<br>Total       | Volume(3) | 1.146  | 1,159   | 1.206   | 1.271   | 1,380   | 1,575   | 2.003   | 3,329   | 4.640   | 8.257   |        |     |
| Relative<br>Oil         | Volume(2) | 1.146  | 1,141   | 1.128   | 1,116   | 1,104   | 1,091   | 1.078   | 1.063   | 1.058   | 1.052   | 1.041  | 000 |
| Solution<br>Gas/Oil     | Ratio(1)  | 291    | 276     | 237     | 203     | 168     | 133     | 94      | 52      | 36      | 20      | 0      |     |
| Pressure                | PSIG      | 2280   | 2150    | 1800    | 1500    | 1200    | 006     | 009     | 300     | 200     | 100     |        |     |

• }

Gravity of Residual Oil = 28.5° API at 60°F.

Cubic feet of gas at 14.73 psia and 60°F. per barrel of residual oil at 60°F. £36£

Barrels of oil at indicated pressure and temperature per barrel of residual oil at 60°F. Barrels of oil plus liberated gas at indicated pressure and temperature per barrel of residual oil at 60°F.

Cubic feet of gas at indicated pressure and temperature per cubic foot at 14.73 psia and 60°F.

. .

Petroleum Reservoir Engineering

### ABERDEEN, SCOTLAND

| Page  | ot        | 13 |
|-------|-----------|----|
| File_ | RFLA 8202 | 92 |
| Well  | 31/2-9    |    |

### VISCOSITY DATA AT 154°F.

| Pressure     | Oil Viscosity     | Calculated<br>Gas Viscosity | Oil/Gas<br>Viscosity |
|--------------|-------------------|-----------------------------|----------------------|
|              | <b>-</b>          |                             |                      |
| PSIG         | <u>Centipoise</u> | Centipoise                  | Ratio                |
|              |                   |                             |                      |
| 5000         | 2.182             |                             |                      |
| 4000         | 2.008             |                             |                      |
| 3500         | 1.920             |                             |                      |
| 3000         | 1.831             |                             |                      |
| 2500         | 1.745             |                             |                      |
|              | ration 1.704      |                             |                      |
|              | sure              |                             |                      |
|              | 1.713             | 0.0178                      | 96.4                 |
| 2150         |                   | •                           |                      |
| 1800         | 1.804             | 0.0161                      | 111.8                |
| 150 <b>0</b> | 1.944             | 0.0151                      | 128.6                |
| 1200         | 2.143             | 0.0144                      | 149.2                |
| 900          | 2.407             | 0.0138                      | 174.4                |
| 600          | 2.747             | 0.0132                      | 207.8                |
| 300          | 3.183             | 0.0127                      | 250.7                |
| 200          | 3.343             | 0.0125                      | 267.7                |
| 100          | 3.507             | 0.0122                      | 286.3                |
|              |                   | 0.0122                      | 200.5                |
| 0            | 3.666             |                             |                      |

Petroleum Reservoir Engineering ABERDEEN, SCOTLAND

| Page | 8    | of 13  | - |
|------|------|--------|---|
| File | RFLA | 820292 |   |

Well\_\_\_31/2-9

### SEPARATOR TESTS OF RESERVOIR FLUID SAMPLE

| Separator<br>Pressure<br>PSI Gauge | Separator<br>Temperature<br>°F. |     | Gas/Oil<br>Ratio<br>(2) | Stock Tank<br>Gravity<br>°API @ 60°F. | Formation<br>Volume<br>Factor(3) | Separator Substitution Substitution Substitution Substitution (4) Figure 1. Separator (4) Figure 1. Se | ravity of |
|------------------------------------|---------------------------------|-----|-------------------------|---------------------------------------|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| 450<br>to                          | 58                              | 190 | 197                     |                                       |                                  | 1.037                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.598*    |
| 0                                  | 58                              | 89  | 89                      | 28.8                                  | 1.142                            | 0.999                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.719*    |
| 250<br>to                          | 58                              | 230 | 235                     |                                       |                                  | 1.021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.620     |
| 0                                  | 58                              | 51  | 51                      | 28.8                                  | 1.142                            | 0.999                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.749     |
| 150<br>to                          | 58                              | 253 | 256                     |                                       |                                  | 1.012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.634     |
| 0                                  | 58                              | 31  | 31                      | 28.8                                  | 1.142                            | 0.999                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.764     |
| 50<br>to                           | 58                              | 276 | 277                     |                                       |                                  | 1.004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.661     |
| 0                                  | 58                              | 11  | 11                      | 28.8                                  | 1.142                            | 0.999                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.756     |

- \* Gas collected and analysed for extended hydrocarbon composition.
- (1) Gas/Oil Ratio in cubic feet of gas at 14.73 psia and 60°F. per barrel of oil at indicated pressure and temperature.
- (2) Gas/Oil Ratio in cubic feet of gas at 14.73 psia and 60°F. per barrel of stock tank oil at 60°F.
- (3) Formation Volume Factor is barrels of saturated oil at 2280 psig and 154°F. per barrel of stock tank oil at 60°F.
- (4) Separator Volume Factor is barrels of oil at indicated pressure and temperature per barrel of stock tank oil at 60°F.

Petroleum Reservoir Engineering

### ABERDEEN, SCOTLAND

| Page  | 9 of 13     |  |
|-------|-------------|--|
| File_ | RFLA 820292 |  |
| Well  | 31/2-9      |  |

### HYDROCARBON ANALYSES OF SEPARATOR GAS SAMPLES

| Separator Conditions: | 450 PSIG @ 58°F.                            | 0 PSIG @ 58°F.                              |
|-----------------------|---------------------------------------------|---------------------------------------------|
| Component             | Mol Percent GPM                             | Mol Percent GPM                             |
| Hydrogen Sulfide      | NIL                                         | NIL                                         |
| Carbon Dioxide        | 0.81                                        | 1.89                                        |
| Nitrogen              | 3.30                                        | 0.68                                        |
| Methane               | 92.29                                       | 77.83                                       |
| Ethane                | 3.04                                        | 14.20                                       |
| Propane               | 0.27 0.074                                  | 2.43 0.669                                  |
| iso-Butane            | 0.13 0.043                                  | 1.65 0.540                                  |
| n-Butane              | 0.04 0.013                                  | 0.34 0.107                                  |
| iso-Pentane           | 0.03 0.011                                  | 0.34 0.125                                  |
| n-Pentane             | 0.01 0.004                                  | 0.17 0.062                                  |
| Hexanes               | 0.03 0.012                                  | 0.14 0.057                                  |
| Heptanes              | 0.03 )                                      | 0.23 )                                      |
| Octanes               | 0.01 ) 0.023                                | 0.07 ) 0.150                                |
| Nonanes plus          | 0.01 )                                      | 0.03 )                                      |
| -                     | $\overline{100.00} \qquad \overline{0.180}$ | $\overline{100.00} \qquad \overline{1.710}$ |

Calculated gas gravity(Air=1.000): 0.598 0.719

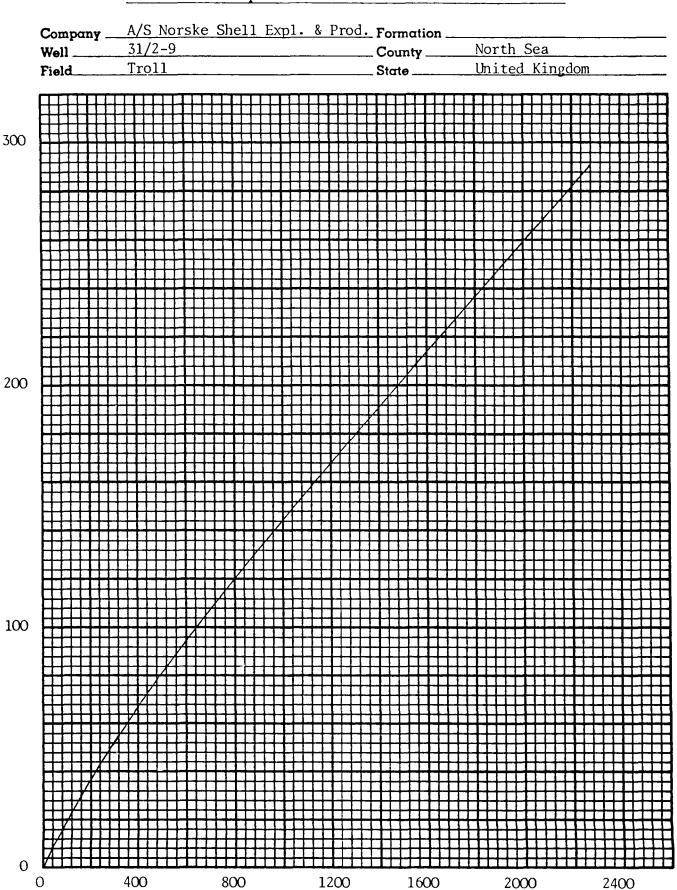
Calculated gross heating value (BTU per cubic foot of dry gas

at 14.73 psia and 60°F.): 1007 1212

Petroleum Reservoir Engineering ABERDEEN, SCOTLAND

| Page | 10of13      |
|------|-------------|
| File | RFLA 820292 |
| Well | 31/2-9      |

# ANALYSIS OF RESIDUAL LIQUID FROM FLASH SEPARATION TEST\* Pour Point L -50°C Cloud Point -20°C Wax Content 2.77 Drop melting point of wax (IP 133) 50.8°C

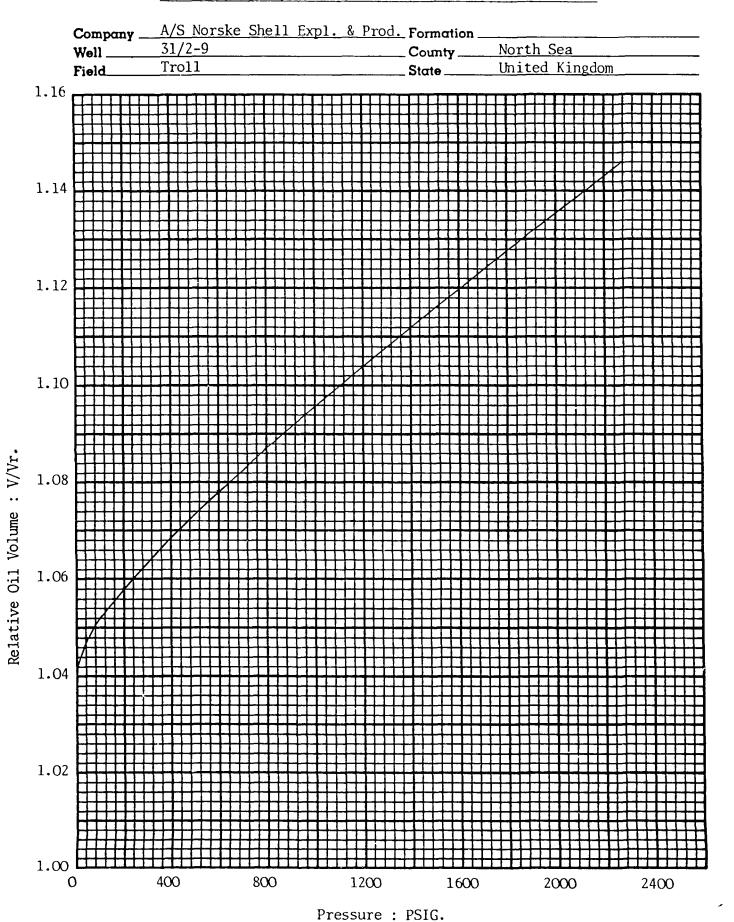

L = Less Than

<sup>\* 450</sup> psig @ 58°F to 0 psig @ 58°F.

Petroleum Reservoir Engineering
ABERDEEN, SCOTLAND

Page 11 of 13 File RFLA 820292

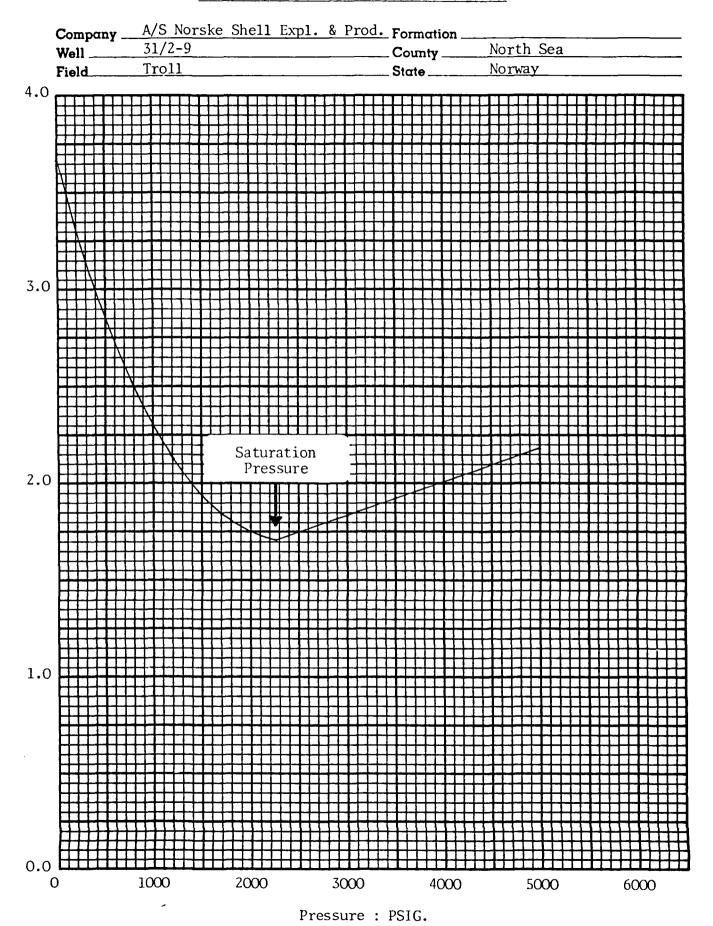
# Differential Vaporisation of Reservoir Fluid at 154°F.




Pressure: PSIG.

Petroleum Reservoir Engineering
ABERDEEN, SCOTLAND

Page 12 of 15 File RFLA 820292


<u>Differential Vaporisation of Reservoir Fluid at</u> 154°F.



Petroleum Reservoir Engineering ABERDEEN, SCOTLAND

Page 13 of 13 File RFLA 820292

## Viscosity of Reservoir Fluid at 154°F.



Petroleum Reservoir Engineering ABERDEEN, SCOTLAND

A/S NORSKE SHELL EXPLORATION & PRODUCTION Well: 31/2-9

RFLA 820292

Core Laboratories UK Limited Reservoir Fluid Analysis

Les. K. Sebborn

Manager - RFL Aberdeen

### 31/2-9 RFT SAMPLES

The first two paragraphs of Corelab's covering letter to this report require clarification. The following account explains the procedures employed in the recovery and analysis of RFT samples from well 31/2-9.

An unsegregated and a segregated RFT sample were taken in the 31/2-9 oil zone. The unsegregated sample was drained into steel cans on the rig and the RFT chamber containing the segregated sample was sent to shore for transfer. During the transfer it became evident that the chamber contained only a small amount of oil (later found to be 35 cc). It was evident that this was insufficient for a complete PVT analysis. Therefore Corelab were asked to recombine crude oil from the unsegregated sample with associated gas from the 31/2-7 oil zone test (bottle No. A3908). A complete analysis was performed on this sample and is reported in this document (RFLA 820292).

The 35 cc sample (bottle 9024-48) sufficed only for the pressure volume relationship and compositional analysis. This is reported in the Partial Fluid Study (RFLA 830015). The data obtained are very similar to those from the recombined crude sample and thus tend to confirm the validity of the full PVT analysis as reported in this report.

B. Reinholdtsen Reservoir Engineer A/S Norske Shell