

l T

I

L

A/S NORSKE SHELL SPECIAL CORE ANALYSIS WELL: 31/2-9 DATE: JULY 1983

Section Street, Section Section

TABLE OF CONTENTS

	Page
COMMENTS	3-6
FLUID PROPERTIES	7
PLUG SIZE TABLE	8
POROSITY AND GRAIN DENSITY TABLE	9
KLINKENBERG CORRECTED AIR PERMEABILITY DATA	10-11
KLINKENBERG PERMEABILITY PLOTS	12-17
PERMEABILITY VERSUS POROSITY PLOT	18
CONFINING PRESSURE MEASUREMENTS (GAS)	19
TABLES AND POROSITY/PERMEABILITY REDUCTION PLOTS	19-24
CONFINING PRESSURE MEASUREMENTS (WATER)	25
TABLES AND POROSITY REDUCTION PLOTS	25-38
FORMATION RESISTIVITY FACTOR/POROSITY DATA TABLE AND DETERMINATION OF a AND m FACTOR	39
FORMATION RESISTIVITY FACTOR VS. POROSITY PLOTS	40-44
CATION EXCHANGE CAPACITY DATA TABLE	45
CAPILLARY PRESSURE BY MERCURY INJECTION DATA TABLE	46-47
CAPILLARY PRESSURE VS. MERCURY SATURATION PLOTS	48-53

COMMENTS

GENERAL:	Special core analyses have been completed on 16
	frozen samples collected from well 31/2-9 at the
	depths agreed upon by Shell in March 1983.
	The samples were cylindrical plugs of $l\frac{1}{2}$ inch
	diameter.

PREPARATION: All samples were gently drilled and cut in frozen condition using liquid nitrogen as a coolant and later cleaned with methanol and toluene. The samples used in the confining pressure measurements were first mounted frozen in a triaxial cell and allowed to thaw overnight with a hydrostatic sleeve pressure of approximately five bar. The cleaning process commenced the following day with subsequent gentle overnight air blow drying. For assurance of completely dry samples, the plugs were vacuum dried before the actual air permeability, porosity and confining pressure measurements.

MEASUREMENTS: AIR PERMEABILITY

Air permeability was measured on all samples using N_2 gas at three different back pressures. These values were the basis for calculating the Klinkenberg corrected permeability (k.e.l.). Permeabilities presented of the samples used in the capillary pressure measurements were collected using the hassler holder system at 15 bar. Otherwise, the reported permeabilities were obtained using the triaxial sample holder also at 15 bar. Both tabular and graphic compliations of data have been enclosed in this report.

POROSITY AND GRAIN DENSITY

Three samples, depths 1555.65, 1576.5 and 1592.2 m were measured by helium injection in a triaxial cell before the gas confining pressure mesurements began. A 15 bar confining pressure was applied on the sample to avoid heliun leakage. Grain matrix volume was determined using a helium porosimeter after dismounting the sample from the holder. Sample porosity and grain density were then obtained by further

calculation of the above data.

Helium porosity (grain volume) and bulk volume by mercury displacement were measured on the six well consolidated samples selected for capillary pressure analysis.

Porosity values on the remaining samples selected for formation resistivity factor and confining pressure measurements (water) were determined by formation water saturation. The procedure employed was first to evacuate the plug confined in the triaxial cell and then inject a measured volume of water into the void pore space. To ensure better sample saturation, a 15 bar pressure was then applied to the injected water. A net confining pressure on the plug was maintained at a constant level of 15 bar during this operation.

After the subsequent confining pressure analysis was completed, methanol was pumped through each sample to remove the formation water. When the flushing/cleaning process was complete the sample was removed from the triaxial cell and oven-dried overnight. Helium porosimeter grain volume and sample weight were measured on the following day to determine sample grain density.

CONFINING PRESSURE MEASUREMENTS

Net overburden pressure was set in the laboratory without any Geertsma-factor correction. Measurements were carried out using a triaxial cell at increasing pressure levels of 15 ("atmospheric"), 50, 100, 150 and 200 bar.

a) Gas

Three samples, depths 1555.65, 1576.5 and 1592.2m, were selected for gas porosity and gas permeability measurements. It has been assumed that the sample porosities were preserved at 15 bar confining pressure ("atmospheric" condition). Gas porosity was measured by helium injection at each confining pressure. Once stable porosity values were obtained (recorded approximately 15-30 min. after confining pressure increase), the N₂ gas permeability (also at three different back pressures) was measured. Liquid permeability and formation resistivity factor (FRF) measurements at various confining pressures are not possible to complete on such "dry" samples.

b) <u>Water</u>

The remaining seven samples were, hovewer, selected for formation resistivity factor and consequently saturated with a measured volume of simulated formation water while installed in a triaxial cell set at 15 bar. (The 15 bar porosity measurement procedure has been illustrated above under "Measurements : Porosity and Grain Density"). Porosity determination on these samples was completed by measuring pore volume reduction at each confining pressure step with a graduated pipette (vol. 1.0 ml, grad. 0.01 ml) located at the air-free outlet end of the triaxial holder.

The formation resistivity factor was measured using a frequency of 1 kHz. A platinum screen was placed at each end of the plug to ensure good electrical contact over the end surface. The parameters "a" and "m" in Archies formula were calculated both by least squares method through (FF = 1.0, \emptyset = 1.0) and least squares method (free fit).

Archies formula

 r_0 FF= $---= a \cdot 0^{-m}$ r_0

 r_0 = resistivity of sample (100 % saturated) r_w = restistivity of saturating formation water a = FF-value at fractional porosity of 1.0

 \emptyset = fractional porosity

m = cementation

Confining pressure data including N_2 permeability and helium porosity reduction curves plus water porosity reduction curves have been presented. In addition, FRF and fractional water porosity data sets have been presented tabularly followed by a presentation of forced fit curves at the specified confining pressures.

CATION EXCHANGE CAPACITY (C.E.C.)

C.E.C. was measured on seven samples $(1\frac{1}{2}$ inch plug trimmings) by employing the wet chemistry method.

The sample matrix was carefully broken down in an ultra sonic bath using methanol and toluene as cleaning solvents. Actual C.E.C. values were determined as the capacity of spending cobalt in a hexamin cobalt (III) chloride solution recorded by a UV-visible spectrophotometer.

The data have been reported together with the Klinkenberg corrrected air permeability, porosity and grain density valves measured on the $l\frac{1}{2}$ inch plugs from the corresponding depths.

CAPILLARY PRESSURE BY MERCURY INJECTION

Mercury injection was performed on six half-plugs selected from well 31/2-9. Porosity and grain density were measured on the samples prior to the injection measurements.

In the mercury chamber each test specimen was first evacuated and subsequently injected with mercury in measured pressure level increments.

Mercury saturation versus capillary pressure data have been presented tabularly and graphically.

a contraction of a constraint

FLUID PROPERTIES

FORMATION WATER

The formation water was made from chlorides of sodium according to this list:

	Na ⁺	:		23776	ppm
	c1 ⁻	:		36724	ppm
Resistivity	(20 ^o C)	:	rw	= 0.121	$_{\Omega}$ m
Resistivity	(54.4°C)	:	r _w	= 0.070	Ω m
Density	(20 °C)	:	Ø	= 1.043	g/cm ³
Viscosity	(20 °C)	:	μ	= 1.106	cP

NITROGEN GAS

Viscosity (20°C) : μ = 0.0176 cP

____L____________

سادسة ويتفكلان سادم

PLUG SIZE

Depth (m)	Length (cm)	Diameter (cm)	Bulk volume (cm ³)
1555.65	6.92	3 76	74. 67
1576.5	7.04	3.70	75.01
1577.2	6.90	3.70	74.19
1582.8	6.81	3.76	75.62
1585.5	4.40	3.75	48.60
1592.2	4.74	3.75	50.51
1594.0	6.97	3.63	72.13
1601.2	7.05	3.78	79.12
160 3.9 0	3.36	3.75	37.01
1611.55	5.60	3.78	62.84
1614.30	3.58	3.74	39.58
1615 .9 0	3.56	3.77	39.48
1620.40	3.67	3.76	40.50
1622.25	7.24	3.77	80.82
1625.10	3.61	3.77	40.10
1627.00	3.56	3.74	38.63

POROSITY AND GRAIN DENSITY

Depth (m)	Porosity (%)	Grain Density(g/cm ³)
1555.65	22.6	2.76
1576.5	33.1	2.65
1577.2	35.1	2.64
1582.8	28.6	2.64
1585.5	34.2	2.66
1592.2	32.3	2.65
1594.0	34.0	2.64
1601.2	24.1	2.63
1603.9	28.1	2.62
1611.55	22.6	2.63
1614.3	27.5	2.61
1615.9	25.3	2.61
1620.4	28.9	2.62
1622.25	23.6	2.63
1625.1	26.6	2.61
1627.0	29.3	2.60

İ.

. . . .

يه صيرة المشيورة

. Lines and the second
A. C. C. Constant

KLINKENBERG CORRECTED AIR PERMEABILITY

Depth	(Mean Pressure) ⁻¹	Air permeability	Klinkenberg corr.
(m)	(atm.abs.) ⁻¹	k _a (mD)	permeability k.e.l.(mD)
<u></u>			
1555.65	0.742	30.8	24.6
	0.574	29.5	
	0.447	28.3	
1576.5	0.891	1 399	1250
	0.659	1365	
	0.497	1332	
1577.2	0.881	907	730
100002	0.654	867	
	0.494	828	
1582.8	0.863	150	141
	0.644	148	_
	0.489	146	
1585.5	0.897	1398	1044
	0.662	1314	
	0.499	1233	
1592.2	0 .9 00	2023	1642
	0.664	1941	
	0.500	1849	
1594.0	0.906	10566	8007
	0.667	9965	
	0.502	94 05	
1601.2	0.664	15.0	13.2
	0.526	14.6	
	0.418	14.3	

سير تقسم معجم ولو والراجم

Depth	(Mean Pressure) ⁻¹	Air permeability	Klinkenberg corr.
(m)	$(atm.abs.)^{-1}$	k _a (mD)	permeability k.e.l.(mD)
1603.9	0.715	17.8	15.0
	0.557	17.2	
	0.437	16.7	
1611.55	0.680	13.4	11.4
	0.536	13.3	
	0.424	12.7	
1614.3	0.704	10.8	8.75
	0.551	10.4	
	0.433	10.0	
1615.9	0.601	5.36	4.21
	0.486	5.14	
	0.392	4.96	
1620.4	0.733	36.1	33.3
	0.568	35.5	
	0.444	35.0	
1622.25	0.584	10.9	9.15
	0.475	10.6	
	0.385	10.3	
1625.1	0.711	11.6	9.79
	0.555	11.2	
	0.436	10.9	
1627.0	0.718	14.9	12.6
	0.559	14.4	
	0.438	14.0	

1/Mean Pressure (1/atm)

65-JUL-83 Geco 081 - Rog. Industritrykk 21800

- 12 -

- 13 -

85-JUL-83

85-JUL-83

1/Mean Pressure (1/atm)

1/Mean Pressure (1/atm)

- 17 -

KLINKENBERG CORRECTED AIR PERMEABILITY

Curve no 1 : Sample no : Depth : 1594.00 m Klink. perm.: 8007 mD

1/Mean Pressure (1/atm)

85-JUL-83 Geco 081 · Rog. Industritrykk 21800 KLINKENBERG PERMEABILITY VS. POROSITY

a da antes de la composición de la comp

-

Depth (m): 1555.65

		TED UC	100 bar	150 bar	200 ba
(linkenberg air perm.(mD):	24.6	22.1	20.4	19.2	18.3
ermeability reduction	1.00	06•0	0.83	0.78	0.74
fraction of original) orosity (%):	22•6	22.2	21.8	21.6	21.3
orosity reduction:	1.000	0.982	0.965	0.956	0.942
(frac. of original) Pore volume (cm ³):	16.91	16.61	16.36	16.16	16.00
ore volume reduction <u>A PV</u>	0•000	0.018	0.033	0.044	0.054

PERMEABILITY AND POROSITY VERSUS CONFINING PRESSURE

6 464 - Rog. Industrittykk 216

Í

Ì

ł

Depth (m): 1576.50

Measurements	"Atmospheric" 15 bar	50 bar	100 bar	150 bar	200 bar
Klinkenberg air perm.(mD):	1250	1028	829	707	586
Permeability reduction (fraction of original)	1.00	0.822	0.66	0.57	0.47
Porosity (%):	33.1	31.9	30.9	30.1	29.4
Porosity reduction: (frac. of original)	1.000	0.964	0.934	6u6°U	0.888
Pore volume (cm ³):	24.86	23.95	23.15	22.58	22.06
Pore volume reduction ΔPV (frac. of original) orig.PV	000•0	0.037	0.069	0.092	0.113

PERMEABILITY AND POROSITY VERSUS CONFINING PRESSURE

BC-JUL-63 Geco 081 - Rog. Industritrykk 21800

Depth (m): 1592.2

Measurements	"Atmospheric" 15 bar	50 bar	100 bar	150 bar	. 200 har
Klinkenberg air perm.(mD):	1642	1460	1322	1188	1080
Permeability reduction (fraction of original)	1.00	0.89	n.81	0.72	0.66
Porosity (%):	32.3	31.7	31.0	30.7	30.3
Porosity reduction: (frac. of original)	1.000	0.981	0•960	0.950	0 . 938
Pore volume (cm ³):	16.32	16.01	15.65	15.50	15.32
Pore volume reduction (frac. of original) orig.PV	0•000	0.019	0.041	0.050	0.061

PERMEABILITY AND POROSITY VERSUS CONFINING PRESSURE

Confining pressure (bar)

- 24 -

Ĩ

Depth (m): 1577.2

نىپ ا

Measurements	"Atmospheric" 15 bar	50 bar	100 bar	150 bar	200 bar
Porosity (%):	35.1	34•0	33.3	32.8	32.3
Porosity reduction: (frac. of original)	1.000	0.969	0 . 948	0.934	0.921
Pore volume (cm^3) :	26.04	24.81	24.00	23.47	23.00
Pore volume reduction:	0•000	0.047	0.078	660*0	0.117
Formation resistivity factor (1 kHz)	4.70	5.05	5.29	5.46	5.60
FRF - Increment: (fraction of original)	1.00	1.07	1.13	1.16	1.19

I

|

POROSITY VERSUS CONFINING PRESSURE

15-JUL-83 Geco 081 - Rog. Industritrykk 21800

Depth (m): 1582.8

Measurements	"Atmospheric" 15 bar	50 bar	100 bar	150 bar	200 bar
Porosity (%):	28.6	28.0	27 • 5	27.2	26.9
Porosity reduction: (frac. of original)	1.000	0.977	196*0	0.950	0.40
Pore volume (cm ³):	21.63	20.96	20.48	20.16	19.86
Pore volume reduction: $\frac{\Delta PV}{\text{org. PV}}$ (frac. of original) org. PV	0•000	0.031	0.053	0.068	0.082
Formation resistivity factor (1 kHz)	8.10	8.64	9.04	9.35	9.63
FRF - Increment: (fraction of original)	1.00	1.07	1.12	1.15	1.19

POROSITY VERSUS CONFINING PRESSURE

Depth : 1582.80 m

Original Porosity (curve 1) : 28.6 %

- 28 -

Depth (m): 1585.5

_ 1 ...

Measurements	"Atmospheric" 15 bar	50 bar	100 bar	150 bar	200 ba r
<pre>Porosity (%):</pre>	34.2	33 . 0	32.3	31.8	31.4
Porosity reduction: (frac. of original)	1.000	0.966	0.944	0.929	0.916
Pore volume (cm ³):	16.63	15.78	15.25	14.89	14.60
Pore volume reduction:	0•000	0.051	0.083	0.105	0.122
Formation resistivity factor (1 kHz)	4.56	4.88	5.09	5.26	5.37
FRF - Increment: (fraction of original)	1.00	1.07	1.12	1.15	1.18

. ..

يود المعرب فيتقصف

GECO OF NORWAY AS Petrohym laboratory

POROSITY VERSUS CONFINING PRESSURE

Depth : 1585.50 m

Original Porosity (curve 1) : 34.2 %

Depth (m): 1594.0

Measurements	"Atmospheric" 15 bar	50 bar	100 bar	150 bar	200 bar
Porosity (%):	34•0	32.9	32.3	31.8	31.5
Porosity reduction: (frac. of original)	1.000	0.970	0.950	0.937	0.927
Pore volume (cm ³):	24.50	23.40	22.69	22.24	21.87
Pore volume reduction: <u>∧ PV</u> (frac. of original) org. PV	0.000	0.045	0.074	0.092	0.107
Formation resistivity factor (1 kHz)	4.80	5.10	5.32	5.44	5.55
FRF - Increment: (fraction of original)	1.00	1.06	1.11	1.13	1.16

1

55-JUL-83 Geco 081 - Rog. Industritrykk 21800

di

POROSITY VERSUS CONFINING PRESSURE

Depth : 1594.00 m

Original Porosity (curve 1) : 34.0 %

Depth (m): 1601.2

Measurements	"Atmospheric" 15 bar	50 bar	100 bar	150 bar	200 bar
<pre>Porosity (%):</pre>	24.1	23.4	22•9	22.6	22.4
Porosity reduction: (frac. of original)	1.000	0.973	n.952	0•940	0.929
Pore volume (cm ³):	19.05	18.38	17.86	17.56	17.31
Pore volume reduction: <u>A PV</u> (frac. of original) org. PV	0•000	0.035	0.062	0.078	0•091
Formation resistivity factor (1 kHz)	11.5	12.9	14•0	14.8	15.3
FRF - Increment: (fraction of original)	1.00	1.12	1.21	1.28	1.33

34 -

Confining pressure (bar)

Depth (m): 1611.55

بالمسو

Measurements	"Atmospheric" 15 bar	50 bar	100 bar	150 bar	200 bar
<pre>Porosity (%):</pre>	22.6	21.6	21.0	20.6	20.4
Porosity reduction: (frac. of original)	1.000	0.956	0•930	0.914	n . 903
Pore volume (cm^3) :	14.19	13.40	12.94	12.66	12.46
Pore volume reduction: <u>A PV</u> (frac. of original) org. PV	0•000	0.056	0.088	0.108	0.122
Formation resistivity factor (1 kHz)	11.5	13.4	14.9	15.7	16.3
FRF - Increment: (fraction of original)	1.00	1.17	1.30	1.37	1.42

GECO OF NORWAY A.S Petroleym laboratory

POROSITY VERSUS CONFINING PRESSURE

Depth : 1611.55 m

Original Porosity (curve 1) : 22.6 %

- 36 -

Depth (m): 1622.25

. i.

.

Measurements	"Atmospheric" 15 bar	50 bar	100 bar	150 bar	200 bar
<pre>Porosity (%):</pre>	23.6	22.7	22.1	21.8	21.6
Porosity reduction: (frac. of original)	1.000	0.964	0.938	0.925	0.915
Pore volume (cm ³):	19.04	18.15	17.53	17.23	16.99
Pore volume reduction:	0•000	0.047	0.079	0.095	0.108
Formation resistivity factor (1 kHz)	10.7	12.1	13.2	13.8	14.3
FRF - Increment: (fraction of original)	1.00	1.14	1.24	1.29	1.34

I

ļ

I

ļ

Confining pressure (bar)

/ POROSITY	
FACTOR	
FORMATION	
PRESSURE:	
CONFINING	

WELL 31/2-9

	12
80	•
- - -	.30
Ъ.	0
 ت	 [14]
щ	0
	-2•5
2	<i>.</i>
-1.6	•33
ф Ш	() ⊮
ЪГ	ЪF
	45
	φ-2.
66	•
ĝ−1.	0•35
11 [7]	 [*.
FI	FI
	2.36
	0
1.63	• 38
-Ø-	0
= 11	Е Е
	54
	-2•2
00	•
-1.(•44
тез- II	0
FF	ъr
it.	••
ed f	fit
orce	ree

- 40 -

65-JUL-83

65-JUL-63

CATION EXCHANGE CAPACITY

Depth (m)	Klinkenberg perm. (mD)	Porosity (%)	Grain Density (g/cm ³)	C.E.C. (meq/100g)
1577.2	730	35.1	2.64	2.9
1582.8	141	28.6	2.64	7.4
1585.5	1044	34.2	2.66	2.0
1594.0	8007	34.0	2.64	1.9
1601.2	13.2	24.1	2.63	12
1611.55	11.4	22.6	2.63	15
1622.25	9.15	23.6	2.63	12

See. 11.

and the second
<u>سٹم .</u>

-

CAPILLARY PRESSURE BY MERCURY INJECTION

Depth (m)	:	1603.90	1614.30	1615 .9 0
Klink. perm. (mD)	:	15.0	8.75	4.21
Pore volume (cm ³)	:	10.40	10.87	9.99
Porosity (%)	:	28.1	27.5	25.3
Grain density (g/cm^3)):	2.62	2.61	2.61

Capillary pressure (bar abs.)	Pore entry radius (microns)	Mercury sa	turation	(percent of pore volume)
0.2	36.8	0.6	0.9	0.9
0.4	18.4	0.8	1.1	1.1
0.7	10.5	1.2	1.3	1.2
1.0	7.36	2.1	1.4	1.3
1.5	4.91	6.1	1.9	1.6
2.0	3.68	12.2	4.0	2•2
3.0	2.45	22.0	11.1	4.8
5.0	1.47	33.6	26.5	15.7
8.0	0.920	42.0	36.5	25.7
12.0	0.613	49.4	45.6	38.2
17.0	0.433	55.2	52.7	45.9
25.0	0.294	60.5	60.5	54.6
35.0	0.210	66.5	66.0	61.2
50.0	0.147	71.6	71.9	68.1
70.0	0.105	75.9	76.2	72.3
100	0.0736	79.9	80.0	77.6
140	0.0526	83.0	83.7	81.1

The Constitution of the Association of the Associat

.

۰.

· • • - ·

l

CAPILLARY PRESSURE BY MERCURY INJECTION

Depth (m)	:	1620.40	1625.10	1627.00
Klink. perm. (mD)	:	33.3	9.79	12.6
Pore volume (cm ³)	:	11.69	10.66	11.32
Porosity (%)	:	28.9	26.6	29.3
Grain density (g/cm ³)):	2.62	2.61	2.60

Capillar pressure (bar abs	y Pore entry radius .) (microns)	Mercury sa	aturation	(percent of pore volume)
0.2	36.8	1.5	1.7	0.9
0•4	18.4	1.7	2.0	1.2
0.7	10.5	2.1	2.3	1.6
1.0	7.36	5.2	2.5	2.5
1.5	4.91	10.9	3.0	5.2
2.0	3.68	15.1	4.0	8.9
3.0	2.45	22.1	9.9	17.0
5.0	1.47	33.6	21.1	28.5
8.0	0.920	42.1	32.3	37.4
12.0	0.613	49.8	40 •9	45.8
17.0	0.433	56.1	48.6	52.6
25.0	0.294	62.9	57.2	59.6
35.0	0.210	68.8	63.0	65.5
50.0	0.147	74.1	69.8	70.8
70.0	0.105	77.1	74.6	74.9
100	0.0736	81.9	79.3	78.7
140	0.0526	85.0	82.9	81.7

i ___

• • • • • • •

1

7

CAPILLARY PRESSURE (MERCURY INJECTION)

Mercury Saturation (percent pore space)

B-JUL-83 Geco 081 - Rog Industritrykk 21800

Pressure (bar)

Mercury Saturation (percent pore space)

- 49 -

CAPILLARY PRESSURE (MERCURY INJECTION)

Mercury Saturation (percent pore space)

- 50 -

CAPILLARY PRESSURE (MERCURY INJECTION)

51

Mercury Saturation (percent pore space)

80-JUL-83

Pressure (bar)

QR. A

78. 8

89L Ø

Mercury Saturation (percent pore space)

5**I.** 8

49. A

31. 8

21. 8

18.8

- 52 -

Mercury Saturation (percent pore space)

- 53 -