Denne rapport tilhører

STATOIL

L&U DOK. SENTER

L. NR. 12484100010

KODE Well 31/2-9 nr.6

Returneres etter bruk

WELL SUMMARY

FOR

A/S NORSKE SHELL

WELL NO. 31/2-9

WELL SUMMARY

FOR

A/S NORSKE SHELL

WELL NO. 31/2-9

GENERAL SUMMARY

OPERATOR A/S NORSKE SHELL

WELL NO. 31/2-9

OPERATOR'S REPRESENTATIVES

JIM DALY, FRANS VAN KAMPEN, CHRIS WESTON

CONTRACTOR DOLPHIN SERVICES

BORGNY DOLPHIN

CONTRACTOR'S REPRESENTATIVES

JOHN BUTCHART, HARALD FRIGSTAD

ANCHOR ENGINEERS

CHRIS ATKINSON, CHARLES BLANCHARD, PER T. SKADBERG

339 m WATER DEPTH 364 m SEABED to RKB 36" HOLE DRILLED TO 460 m 30" CASING SET AT 450 m 26" HOLE DRILLED TO 816 m 20" CASING SET AT 808 m

171/2" HOLE DRILLED TO 1509 m

13%" CASING SET AT 1498 m

121/4" HOLE DRILLED TO 1770 m

95%" CASING SET AT

81/2" HOLE DRILLED TO

7" LINER SET AT

6" HOLE DRILLED TO

WELL NAME 31/2-9

OPERATOR A/S NORSKE SHELL

ENGINEERS

C. ATKINSON

27.08.82

Ran anchors.

Carried out chemical inventory check, whilst waiting for drill water from boat.

DATE

28.08.82

Started mixing pre-hydrated gel spud mud.

Made shaker and Thule screens inventory check. Dressed Thule unit with 2×200 mesh.

Made up S.A.P.P./Caustic bags in case of Barite plug

DATE 29.08.82

Prepared to spud. Ran to seabed (364 m) with $17\frac{1}{2}$ " bit+ 36" H/O. Spudded in at 09:00. Drilled hole 364 m to 455 m. Finished mix total 1400 bbls spud mud.

Dressed shale shakers with $\frac{20}{B60} \times \frac{20}{B60} \times \frac{20}{B60}$.

WELL NAME 31/2-9

OPERATOR A/S NORSKE SHELL

ENGINEERS C. ATKINSON

DATE 30.08.82

Drilled 36" hole 455 m to 460 m. Circulated } hour. Spotted 250 bbls hivis pill. Circulated } hour. Surveyed. POOH to +370 m. Recovered survey. RIH. No fill. Circulated. Spotted 100 bbls hivis pill. Circulated ½ hour.

Rigged up and ran 30" casing. Pumped last 15 m down with seawater. Cemented casing. Back flow after displacement. Held pressure and waited on cement.

Mixed 170 bbls of 3 % Calcium chloride cement mix water. Mixed +1125 bbls pre-hydrated gel mud.

DATE 31.08.82

Pulled running tool. Attempted to jet wellhead. No success. Ran universal guideframe and jetted wellhead. POOH. Laid down running tool and 36" BHA. Made up 14 3/4" bit +26" hole.

Tagged cement at 441 m. Drilled cement and shoe. Drilled new 26" hole 460 m to 465 m. Overpulled 170,000 lbs. Washed and reamed section 460 m to 465 m. POOH. Picked up jetting sub and RIH to jet wellhead clean.

Diluted back hivis gel to give gel/seawater mud for drilling out of 30" casing. Transferred from pit to fill sand traps (+140 bbls). Weighted up 320 bbls (pit no. 4) for kill mud at 1.35 S.G.

DATE 01.09.82

POOH to reposition jetting tool. RIH and jetted guidepost/ wellhead area. Some improvement found. POOH with jetting tool.

Rigged up and ran pin connector and marine riser.

WELL NAME 31/2-9

OPERATOR A/S NORSKE SHELL

ENGINEERS

C. ATKINSON/ C. BLANCHARD

DATE

02.09.82

Landed hydraulic latch and marine riser. Laid down 26" BHA. Made up 14 3/4" BHA. RIH. Tested diverter system. Displaced hole to mud. Drilled 14 3/4" pilot hole 465 m to 701 m with survey every 100 m.

Maintained mud weight at 1.10 S.G. maximum.

Treated cement contamination initially.

DATE

03.09.82

Circulated hole clean prior to survey. POOH to shoe. RIH and drilled 14 3/4" from 701 m to 785 m. Conditioned mud and drilled to 816 m. Circulated with 500 bbls of 1.35 S.G. mud.

POOH. No drag. Ran logs.

Made up new BHA and RIH with 26" under reamer.

DATE

04.09.82

Opened up 14 3/4" hole to 26" from 465 m to 475 m. Changed pump liner. Opened up hole from 475 m to 816 m. Circulated hole clean with one pump while changing liner. Kept mud weight below 1.10 S.G. with water.

WELL NAME 31/2-9

OPERATOR A/S NORSKE SHELL

ENGINEERS C. BLANCHARD / P.T. SKADBERG

DATE 05.09.82

Circulated hole clean. POOH 30 m inside 30" casing. Displaced 1.08 S.G. native mud to seawater. Observed well for 30 mins.

POOH. Pulled riser. Made up cement head. RIH with 26" bit. Tight hole from 485 m to 550 m. Circulated hole with seawater and viscous slugs. RIH to 800 m. Circulated and reamed to 816 m. Mixed up 70 bbls 1.35 S.G. mud in order to displace hole before running casing.

DATE 06.09.82

Displaced hole with 665 bbls of 1.35 S.G. mud and 310 bbls of viscous mud. Ran and cemented casing. Ran BOP's and riser. Mixed new KCl mud.

DATE 07.09.82

Unable to land BOP's due to excess cement around guide base.

Mixed up a total of 1360 bbls of 1.26 S.G. KCl mud. Sheared mud through pumps.

WELL NAME 31/2-9

OPERATOR A/S NORSKE SHELL

ENGINEERS C. BLANCHARD / P. T. SKADBERG

DATE

08.09.82

Unable to land BOP's. Jetted cement around well head with seawater. Tried to clean quide base.

DATE

09.09.82

Jetted cement around well head with seawater. Started to run riser and landed BOP stack.

DATE

10.09.82

BOP stack landed. Tested BOP. O.K. Ran in hole with $17\frac{1}{2}$ " bit and drilled cement from 792 m to 816 m with KCl mud. Continued drilling hole from 816 m to 825 m. Circulated bottoms

Received 600 bbls brine. Mixed 600 bbls new mud.

WELL NAME 31/2-9

A/S NORSKE SHELL OPERATOR

ENGINEERS C. BLANCAHRD / P.T. SKADBERG

DATE 11.09.82

Drilled from 825 m to 1114 m. Dropped survey at 1114 m. POOH. Tight hole from 900 m to 981 m. Circulated at shoe. RIH. Hit tight spot at 933 m. Washed and reamed from 933 m to 952 m. Continued RIH. Drilled from 1114 m to 1152 m.

Lost 100 bbls kill mud while trying to fill slug pit. Also 50 bbls of kill mud was diluted into system.

Changed all shaker screens 20 S over 60 B. Dumped gumbo box and header box every few singles.

DATE 12.09.82

Increased weight of total system to 1.30 S.G. due to tight hole. Drilled from 1152 m to 1362 m. Ran survey at 1362 m.

POOH to 20" casing shoe. RIH tight. Washed and reamed from 933 m to 952 m. Continued RIH. Drilled from 1362 m to 1506 m. Dropped survey. POOH to shoe. Hit tight spot at 1317 m.

Washed and reamed from 1320 m to 1340 m.

DATE 13.09.82

Increased mud weight of active system to 1.35 S.G. due to tight Circulated hole clean. spot. RIH. POOH. No drag.

Rigged up Schlumberger tool and RIH. Not able to pass 1410 m. Logged from 1410 m. Made up new BHA and RIH with $17\frac{1}{2}$ " bit. Tagged bottom at 1506 m. Circulated and POOH. Rigged up Schlumberger tool and RIH again. Logged.

WELL NAME 31/2-9

OPERATOR A/S NORSKE SHELL

ENGINEERS

C. BLANCHARD/ P. T. SKADBERG

DATE

14.09.82

Schlumberger out of hole. RIH with $17\frac{1}{2}$ " bit. Tagged bottom at 1506 m. Circulated. Drilled from 1506 m to 1509 m. Circulated hole clean. POOH. Circulated and cleaned area around wear bushing. Rigged up to run 13 3/8" casing.

15.09.82

Ran and cemented 13 3/8" casing. Diluted back all pits from 1.35 S.G. to 1.18 S.G. Still 1.35 S.G. weight in hole.

Changed screens 2 and 3 on shaker to 60 B over 80 B.

16.09.82

Tested BOP while waiting on cement. Negative test. Pulled riser with upper BOP package. Worked on BOP.

Control of the Contro

Changed Thule screens to 200 mesh new on both sides.

WELL NAME ___ 31/2-9

OPERATOR A/S NORSKE SHELL

ENGINEERS C. ATKINSON/ P. T. SKADBERG

DATE

17,09,82

Worked on BOP upper package.

Cleaned out pit suction lines to remove settled Barite/solids.

DATE

8.09.82

Finished repairing upper package. Ran package with marine riser.

DATE

19.09.82

Tested BOP. Ran wear bushing. Made up 12 1/4" BHA. RIH. Displaced hole to mud (dumped seawater returns and took 1.35 S.G. mud into pit no. 4 and no. 3). Drilled float, cement and shoe. Drilled 12 1/4" hole to 1514 m. Leak off test 1.55 S.G. equivalent. Drilled ahead.

Diluted back heavy mud to give reserve volume. Mixed chemicals to give desired properties.

Kept active weight at 1.18 S.G. max with dilution. Maintained rheology with Drispac.

WELL NAME 31/2-9

OPERATOR A/S NORSKE SHELL

ENGINEERS

C. ATKINSON/ P. T. SKADBERG

DATE

20.09.82

Drilled 1518 m to 1527 m. Circulated drill break. Drilled 1527 m to 1536 m. Circulated. Drilled 1536 m to 1554 m. Circulated bottoms up. POOH. Picked up 30' core barrel. RIH. Circulated ½ hour and dropped ball. Cored 1554 m to 1563 m.

Circulated hour. POOH. Recovered core no. 1 (100 %). Made up 60' core barrel.

DATE

21.09.82

Picked up coring BHA. RIH. Circulated and washed to bottom. 2 m fill. Circulated and dropped ball. Cored 1563 m to 1573 m. POOH inside casing and hung off. Waited on weather.

Continued POOH to recover core no. 2.

Maintained fluid loss control and improved filter cake with LF-5 additions.

DATE

22.09.82

Recovered core no. 2 (83 %). Made up new BHA. RIH. Cored 1573 m to 1591.5 m. POOH. Recovered core no. 3 (100 %). Made up new BHA. RIH. Cored 1591.5 m to 1610 m. POOH to recover core no. 4.

Maintained properties as per spec. Dilution for mud weight at 1.18 S.G. maximum.

WELL NAME 31/2-9

OPERATOR A/S NORSKE SHELL

ENGINEERS

C. ATKINSON

DATE

23.09.82

Recovered core no. 4 (88 %). RIH. Cored 1610 m to 1628 m. POOH. Recovered core no. 5 (98 %). Laid down coring equipment. Made up 12 1/4" BHA. RIH to 1534 m. Opened hole from $8\frac{1}{2}$ " to 12 1/4" from 1554 m to 1616 m.

Maintained system properties and mud weight at 1.18 S.G. maximum.

DATE

24.09.82

Opened hole 1616 m to 1628 m. Drilled 12 1/4" hole 1628 m to 1730 m. Circulated bottoms up. POOH. Changed bit. RIH. Drilled 1730 m to 1770 m. (Well T.D.). Circulated bottoms up.

DATE

25.09.82

Finished circulating bottoms up and cleaning hole. POOH. No drag. Rigged up and ran Schlumberger logs.

THE RESERVE OF THE RESERVE OF THE SECOND OF

Dumped and cleaned out sand trap, gumbo and shaker boxes.

WELL NAME 31/2-9

OPERATOR A/S NORSKE SHELL

ENGINEERS

C. ATKINSON

DATE

26.09.82

Continued logging 12 1/4" hole.

DATE

27.09.82

Finished logging. Rigged down Schlumberger.

Laid down $6\frac{1}{2}$ " D.C.'s at $8\frac{1}{2}$ " stabs.

DATE 28.09.82

Made up 2 7/8" tubing and RIH with 5" D.P. Set cement plug at 1765 m to 1625 m. POOH to 1610 m. Reversed out. Set plug 1610m to 1435 m.

POOH to 1400 m. Reversed out. Hole clean. POOH. Laid down 5" D.P. Cut and retrieved 565' of 13 3/8" casing.

OPERATOR: A/S NO

A/S NORSKE SHELL

WELL NO.

31/2-9

36"____

_ HOLE/ __30" ___ CASING INTERVAL

Well 31/2-9 was spudded at 09:00 hrs on 29.08.82 with water depth of 339 m and RKB --> seabed 364 m. A $17\frac{1}{2}$ " bit with 36" hole opener was used to drill 36" hole to a T.D. of 460 m.

Seawater was used for drilling, with pills of hivis pre-hydrated Bentonite pumped as required for hole cleaning.

The hole was displaced with ± 750 bbls hivis gel mud (100 % excess) prior to POOH to run 30" casing. Casing was run and set at 450 m.

Approx. 1400 bbls mud used for this section.

OPERATOR:

A/S NORSKE SHELL

WELL NO.

31/2 - 9

173" HOLE/ 13 3/8" CASING INTERVAL

A 35 to 40 lb/bbl concentration of KCl Polymer was used on this section due to the Bentonite clays to be encountered. While BOP's were run, 1360 bbls of 1.26 KCl mud was mixed.

While trying to land the BOP's it was found that cement was caked up on the well head and the guide base was cleaned by jetting water around the guide base.

When drilling started, the cement was drilled out from 792 m to 816 m with the new KCl mud with no problems.

During this section of hole, the average drill rate was between 30 - 35 m per hour. Tight spots were found and reamed at 900 m to 981 m. 310 bbls of 1.45 S.G. kill mud was mixed to keep in pits at all time. Due to tight hole, the mud weight was increased to 1.30 S.G. and the interal between 933 m and 952 m was reamed. Another section between 1320 m and 1340 m was also tight. After reaching casing point at 1504 m, a wiper trip was made with all tight spots reamed. Schlumberger was unable to get to bottom so the mud weight was increased to 1.35 S.G. and logs were run. While running in hole for clean out trip for casing, 5 m more were drilled to 1509 m. Casing was run and during the cement job 115 bbls of muc was lost to the hole displacement of cement.

"我们这么多的工作,"

OPERATOR:

A/S NORSKE SHELL

WELL NO.

31/2-9

3/4" pilot/26" HOLE/ 20" CASING INTERVAL

A native mud was used to drill this section. After drilling out new 26" hole from 460 m, a 14 3/4" pilot hole was drilled to 816 m and 300 bbls of 1.35 S.G. mud was displaced in the hole to run logs.

Also 320 bbls of 1.35 S.G. kill mud was on hand.

It should be noted that there was some silt/cement built-up around the guide base and jetting was done prior to running marine riser.

After the 14 3/4" pilot hole was logged, a 26" under reamer was run to 816 m. The native mud was kept below 1.10 S.G. After circulating the hole clean, 30" casing was displaced to seawater and the well was observed. The riser was pulled and a 26" bit was run. Tight hole was encountered at 485 m to 550 m. While drilling, viscous slugs were pumped and the hole was drilled to 816 m. The hole was displaced with 665 bbls of 1.35 S.G. mud and 310 bbls of hivis mud was pumped prior to 20" casing. Casing was cemented and BOP's and riser wererun for next section of hole.

OPERATOR:

A/S NORSKE SHELL

WELL NO.

31/2-9

12 1/4" HOLE/ 9 5/8" CASING INTERVAL

A total of 3 days was lost after cementing 13 3/8" casing due to necessary repairs to the BOP upper package. During this time, mud at surface was reduced to 1.18 S.G. mud weight and treated to retain required properties. (Especially fluid loss below 5 cc).

After rerunning BOP and marine riser, the hole was displaced, and high weight returns (approx. 1.33 S.G.) from the cased plug was taken into reserve pit. Some of this mud was kept as kill mud and the remainder diluted and treated to give reserve volume of 1.18 S.G. mud.

After drilling 4 m of new hole a leak-off test at 1513 m gave an equivalent break-down of 1.54 S.G. Drilling ahead, continued until a drilling break at 1554 m; was circulated and coring commenced. Five cores were taken in all in the interval 1554 m; to 1628 m.

Mud for this section was run as a seawater/Drispac system with no further KCl/Ancopol additions necessary for inhibition. Additions of LF-5 were continuous to maintain a good filter cake through the sands of the reservoirsection and mud weight was maintained at a maximum of 1.18+ S.G. to reduce the chances of any differential sticking through this normaly pressured section.

After opening the hole from $8\frac{1}{2}$ " (core section), drilling of 12 1/4" hole continued to a T.D. of 1770 m. The hole was circulated clean and with no drag on PCOH, logging was started.

Testing was not required after the logging and cement plugs were then set prior to abandoning location.

36" HOLE SECTION

The drilling went as per program. No alterations to be made for this section.

26" HOLE SECTION

The drilling went as per program. No alterations to be made for this section.

17 1/2" HOLE SECTION

The drilling went very smooth in this section. The sticky formation seems to have been taken well care of by the KCl. However, a few tight spots occurred, and also, the logging tool did not get to bottom on the first run. This might be solved by increasing the mudweight slightly throughout the section.

Also, with the high penetration rae in this section, it would be advised a yield point in the 20-25 lbs/100ft range to secure a 100% hole cleaning. This is obtained by increasing the Drispac concentration to 2-2.5 lbs/bbl.

12 1/4" HOLE SECTION

This section went as per program with no severe problems and section costs well below programmed costs. No changes should be made for this section.

WELL NO. 31/2-9

MATERIAL CONSUMPTION & COST ANALYSIS

36" HOLE	ORILLED TO 4	60	Meters ¥¥‰K	30"	CASII	NG SET AT	450	Meters Mexix
ACTUAL AMOUNT	OF HOLE DRIL	LED	96	Meters X ₩X	D	AYS ON INT	ERVAL	2
DRILLING FLUID S	YSTEM SP	UD MUI)					
MATERIAI	_ UNI	T SIZE	PRO	G.	USED	VARIANCE :	± C	TSC
BENTONITE	M/	T	- 20		23	+ 3	7,54	4.00
CAUSTIC SODA	25	KG	20		8	-12	15	2.00
SODA ASH	50	KG	3		88	+ 5	14	8.00
LIME	25	KG	6		0	- 6		
*S.A.P.P.	50	KG	0		1	+ 1	10	5.00
							ļ	
							<u> </u>	
			 				 	
		,						
								
					<u>. </u>			
					·			<u> </u>
		<u> </u>						
								·
COST/DAY \$	3,974.50	тс	TAL CO	ST FOR I	INTERVAL	\$ 7,949	0.00	
COST/Mt. 🕸 🛱t. 🌹	82.80	PF	ROG. CO	ST FOR I	NTERVAL	\$ 7,025	5.50	
ENGR. COST		C	OST VAR	IANCE F	OR INTERV	AL \$ 92	3.50	

WELL NO. 31/2-9

MATERIAL	CONS	SUMPTIC	S NC	COS	T ANALY	/SIS		
14 3/4" PIL	OT DRILLED	TO	Meters		CASIN	IG SET AT		Meters
26" HOLE	Dillece	816	жек	20			808	5,ex tx
ACTUAL AMOUN	T OF HOLE	DRILLED	356	Meters ≅ô è⋉	DA	AYS ON INTE	RVAL	4
DRILLING FLUID	SYSTEM	GEL/SEA	AWATER					
MATERI	AL	UNIT SIZE	PRO	OG.	USED	VARIANCE ±	С	OST
BENTONITE		M/T	4.5	,	15	-30	4,92	0.00
BARITE		M/T	0	<u>'</u>	67	+67	8,97	8.00
CAUSTIC SOD	Α	25 KG	50		51	+ 1	96	9.00
SODA ASH		50 KG	8		12	- 4	22	2.00
LF-5		25 KG	44		0	-44	ļ	
CaCl ₂	·	50 KG	0		56	+56	1,28	8.00
BICARBONATE		50 KG	0		8	+ 8	1.5	4.00
			 				-	
	-		-				1	
							 	
								
							1	
								
								
		·						
COST/DAY	\$4,132.	75	OTAL CO	OST FOR	INTERVAL	\$ 16,63	 36 00	
COST/Mt.XXXXX	\$ 46.		PROG. CC	ST FOR	INTERVAL	\$ 17,9		
ENGR. COST			COST VAF	RIANCE	FOR INTERVA	\$ - 1,4:	39.00	

WELL NO.

31/2-9

HOLE DRILLED	то 1509		3/8"	NG SET AT	Mete
ACTUAL AMOUNT OF HOLE	E DRILLED	693 Meter	L	AYS ON INTE	RVAL 4
DRILLING FLUID SYSTEM	KCl -P	OLYMER			
MATERIAL	UNIT SIZE	PROG.	USED	VARIANCE ±	COST
BARITE	M/T	205	166	39	22,244.00
KCl SX	50 KG	954	450	- 504	8,055.00
KC1 BRINE	BBLS	0	1200	+1200	25,428.00
CAUSTIC	25 KG	115	92	- 23	1,748.00
SODA ASH	50 KG	30	41	+ 11	758.50
LF-5	25 KG	180	120	- 60	5,760.00
DRISPAC REG.	50 LBS	90	85	- 5	14,390.50
ANCOPOL	25 KG	85	80	- 5_	11,840.00
DRILLING DETERGENT	200 L	15	0	- 15	
CMC (LOVIS)	25 KG	81	71	- 10	4,189.00
					١
· · · · · · · · · · · · · · · · · · ·					
		<u> </u>	<u> </u>		
OST/DAY \$23,603	.25 TO	OTAL COST FO	OR INTERVAL	\$ 94,41	3.00
OST/Mt. 80x61. \$1 136	.24 PF	ROG. COST FO	R INTERVAL	\$ 92,41	2.60
NGR. COST		OST VARIANC	E FOR INTERV	AL c. 2 000	2.40

WELL NO. 31/2-9

MATERIAL CONSUMPTION & COST ANALYSIS

12 1/4" HOLE		<u></u>	Meters Pears Mete		NG SET AT	Meter Fate()
ACTUAL AMOUN DRILLING FLUID	1		R/DRISPAC	· · · · · · · · · · · · · · · · · · ·	ATS ON INTE	RVAL 14
MATERI	AL	UNIT SIZE	PROG.	USED	VARIANCE ±	COST
BARITE		M/T	100	21	- 79	2,814.00
BENTONITE		50 KG	220	0	-220	
LIGNO		25 KG	175	0	-175	
CAUSTIC		25 KG	70	41	- 29	779.00
SODA ASH		50 KG	4	15	- 11	277.50
CMC (LOVIS)	l	25 KG	25	23	- 2	1,357.00
LF-5		25 KG	50	112	- 62	5,376.00
DRILLING DE	ETERGENT	200 L	10 -	0	- 10	
XC-POLYMER		50 LBS	15	0	- 15	
DRISPAC REC	3.	50 LBS	60	53	- 7	8,972.90
			,			
						ļ
	·			-		
					· · · · · · · · · · · · · · · · · · ·	
				<u></u>	<u> </u>	<u> </u>
COST/DAY	\$ 1,398	.31 то	TAL COST F	OR INTERVAL	\$ 19,570	6.40
COST/Mt. cox55t.	\$ 75	.00 PF	OG. COST FO	OR INTERVAL	\$ 44,22	1.00
ENGR. COST			OST VARIANC	E FOR INTERV	Al a s s s	4 60

WELL NO.

ENGR. COST

31/2-9

TOTAL CONSUMPTION & COST ANALYSIS

TOTAL DEPTH	1770	Meters 太然	TOTAL HOLE DRILLED	1406	Meters 5¢% X
TOTAL DAYS	33				

MATERIAL	UNIT SIZE	PROG.	USED	VARIANCE ±	COST
BARITE	M/T	305	254	- 51	34,036.00
BENTONITE	M/T	65	38	- 27	12,464.00
BENTONITE	50 KG	220	0	-220	
CAUSTIC SODA	25 KG	255	192	- 63	3,648.00
SODA ASH	50 KG ·	45	76	+ 31	1,406.00
LIME	25 KG	6	00	- 6	
BICARBONATE	50 KG	0	8	- 8	154.00
DRISPAC REG.	50 LBS	150	138	- 12	23,363.40
XC-POLYMER	50 LBS	15	0	- 15	
LF-5	25 KG	274	232	- 42	11,136.00
CMC (LOVIS)	25 KG	106	94	- 12	5,546.00
KC1 BRINE	BBLS	0	1200	+1200	25,428.00
KCl	50 KG	954	450	-504	8,055.00
ANCOPOL	25 KG	85	80	- 5	11,840.00
DRILLING DETERGENT	200 L	25	0	- 25	
LIGNOSULPHONATE	25 KG	175	0	-175	
CALCIUM CHLORIDE	50 KG	0	56	+ 56	1,288.00
S.A.P.P.	50 KG	0	11	+ 1	105.00

COST/DAY	\$ 4,196.04	TOTAL COST FOR WELL	\$ 138,
COST/Mt. 資料配.	\$ 98.48	PROG. COST FOR WELL	\$ 161,

COST VARIANCE FOR WELL

469.00

629.10

\$ - 23,159.70

OSLO - STAVANGER

HUD SYSTEM Drilling Fluid & Material Consumption Report , rao 12 STATO1 ESTIMATED <u>ω</u> DRAWIIC 9 10 $|\infty|$ 1982 DATE 29.8 27.8 30.8 28.8 6.9 9 φ 1.9 1600 SURFACE SPUD MID/ GEL/SEAWATER/ KC1/ 1200 210 SUAFACE 300 200 ESTIMATED DAILY 1125 1010 1170 345 230 MUD BUILT 704 464 350 620 16 25 48 19 BARITE BULK MATERIALS 23 5 BENTONITE M/TONITE BARITESACK MATERIALS BENTON TITE Z Z 0 TYCIVO 0 z Z SODA 15 bo 4 4 ∞ Ħ ASH 20 16 16 12 6 w þo CAUSTICERS ⊐ C ω BICARBOVATE ഗ þ S LIME PAR POLYMERS 23 ∞ U 21 J MATERIALS ADDED TO CONTROL PROPERTIES ENGINEERS OPERATOR WELL NAME 45 <u>1</u>5 LF-5 16 ω ANCOPOL 600 KCI (bbls) A/S NORSKE SHELL KCI (SXS) PR. DET. AL. STEARATE S.A.P. RTHERS F. RIG. AREA DEFOAMER BORGNY DOLPHIN CaCI 21 NORWAY, N. မ္ဟ DEFOAMER

பு

D/

RIMARKS

1600

1910

6018

133

器

얺

82

28

В

19

K

ANCHOR DRILLING FLUIDS AS

OSLO - STAVANGER

HJD SYSTEM _ brilling Fluid & Material Consumption Report KC1-POLYMER/SEAWATER/DRISPAC

ENGINEERS OPERATOR WELL NAME C. BLANCHARD/ P. T. SKADBERG/ C. ATKINSON A/S NORSKE SHELL 31/2-9 RIG. BORGNY DOLPHIN AREA NORWAY, N. SEA

REMARKS	101	FOR	28	27	- -	25	24	23	22	21	20.1	191	18	1.7	16 -	;55 	<u></u>	or;
ARKS	LOTALS	FORWARD	23.9	22.9	21.9	20.9	19.9	18.9	17.9	16.9	15.9	14.9	13.9	12.9	11.9	10.9	1982	DATE
	1715	1600															LOSSES	
	3793	1910	90		20	15	27			587	692	61		252	193	36	LOSSES SU SURFACE	ESI M
	9055	6018	40	83	45	69	300				650			600	650	600	SURFACE	1681
	252	13						-					 	63	. 20	-	MUD BUILT	DAILY
	2	ω	-	2	ω	6	-	-		-	8	5	7	μ.		5	MARITE	3
	38	38		-			-	-	-				-	-	-		BENTONITE M/TONITE	BULK
			<u> </u>								-	+			-	-	BARITE	*_
								Z	z	z	1	-			-	1	BENTONI	SACK
	76	39					4	D N	z	0 N	11	 		14	ω		LIGNO	
	181	81	4	ω	2	ω	7	E.	[FJ	F	11		7	40	10	13	100	74
	8	8									-						BICAL	2200
								S	S	S							BICARBO	VATE
	130	ω <u></u>	ω	ω	-	4	15	F	E	[F]	14			22	21	11	100	
	94	28						Þ	D	D .	23			17	12	14	REG. CMC LOVIS	ő
	216	60	12	12	10	9	6				37			15	23	22	LF-5	MATERIALS ADDED TO CONTROL PROPERTIES
	80	19												16	30	15	AVCOD	ADOED
	1200	600									_					600	KCI (PP)	TO CON
	450					-	<u> </u>						50	265	115	lö 	KCI (S)	TROL PRO
				-	 			-	 	+		-		_			PR. 1	OPERTIE
					-	-	ļ 	-			10	-	10	-	-	-	AL. STE	TRATE
	-	<u> </u>			-		-	-	-		-	-		-	-	 	AL. STE. S.A.P.F	OTHE
	56	56	<u> </u>	<u> </u>	-	-	-	-				-		-	-		DEFOAME	RS /S
	\vdash							-	1	-	+		-				CaCI	
							-									<u> </u>	DEFOAME	R
							-			+	-							
•	T		1 -	1	-1	·1 .	1.5	1	₩ →	I	<u>L</u>	ide SA		<u> </u>	عنصلت	سيحاد	<u> </u>	<u> </u>

Drilling Fluid & Material Consumption Report
MUD SYSTEM SEAWATER/DRISPAC

WELL NAME 31/2-9 AREA NORWAY, N. SEA

OPERATOR A/S NORSKE SHELL RIG BORGNY DOLPHIN

ENGINEERS C. ATKINSON

98	153	FO	,				i	<u>-</u> !	35	34	33	ω K	ω 1	30	29			Day	
REMARKS	ESTIMATED TOTALS	FORWARD							30.9	29.9	28.9	27.9	26.9	25.9	24.9	1982		DATE	!
	1715	1715														JOSSES S SURFACE			
	4004	3793									66			50	95	SURFACE	SB	ESTI	
	9267	9055													212	MUNCLI	2 "	ESTIMATED DAILY	
	254	252													2	MUD BUIL		ES /	
	38	38														BARITE M/T BENT		BULK	
																BARIT	\rightarrow	<u> </u>	
								-	•		Z	Z	Z			BENTON	E / E	SACK	
	76	76									0	0_	0_			L ~ G/M	12	ST	
	<u>6 192</u>	6 181									Z FJ	E E	N E	ω	000	SODA	11		
		ω									<u> </u>	C	<u> </u>		<u> </u>	CAUSTI	INNERS		
											S	w	S			LIME	2 N2		
	138	130						· · · · · · · · · · · · · · · · · · ·			F -	ED .	F -	<u> </u>	7	DRISP ON REGION	₫C		
	94 232	94 2.														701/2 CAC	POLYMERS	- 1	
	<u> </u>	216 80													6	LF-5		MATERIALS ADDED TO	
	1200	1200								, , , , , , , , , , , , , , , , , , ,			<u> </u>			ANCOAC KCI		DED TO C	
	0 450	0 450														KCI (bb	ls)	ONTROL	!
															ļ	KCI (S	יינ	ERT	
		<u></u>							<u> </u>							h		ES É	
														-	 	<u> </u>	Η¥	·	
	56	56														DEFOAN CaCl ₂	rs E		
																DEFOAN			
																	ER		
	ł · ·		1	}	٠٠٠٠					char	ومعدد ا	J	. Page	iene.	- mos	W. 43	خي ا		

Drilling Mud Properties Record

MUD SYSTEM SPUD MUD/ GEL/SEAWATER/ KC1-POLYMER

Day No.

OPERATOR WELL NAME A/S NORSKE SHELL RIG. BORGNY DOLPHIN AREA NORWAY, N. SEA

CHRIS ATKINSON/ C

BLANCHARD/ P. T. SKADBERG

REMARKS 29.8 31.8 27.8 30.8 28.8 1982 9.9 8.9 7.9 4.9 ى 9 2.9 1.9 6.9 ഗ 9 METERS X DEPTH 816 816 816 816 816 816 670 465 465 460 455 1.06 1.06 1.06 1.08 1.08 1.07 1.09 DENSITY PPG D .26 . 26 . S .26 100+ 100+ 52 55 47 55 72 8 sec/91 Z A.V. COS 22 22 22 PV CDS 18 200 3 Y.P. */100 sq.h. 4.5 4.5 4 FLUIDLOSS 30 Minco's 9 E CAKE 32 nas 岜 H.T.H.P. CC'S 10.9 10.9 Þ **★100**9 PH 70 70 70 CITODOM MUD PROPERTIES 240 240 240 H Ca. ** PPM Filtrate Analysis PI ME О **ENGINEERS** % O/(Þ % 50(105 RETORT " SANO BENTONITE #JBBL N 6 2 POTASH #/BBI 40 40 POLYMER */BBL .77 ż 두 OPERATION REMARKS

<u>_</u>

14

12

10

9

ω

ļo

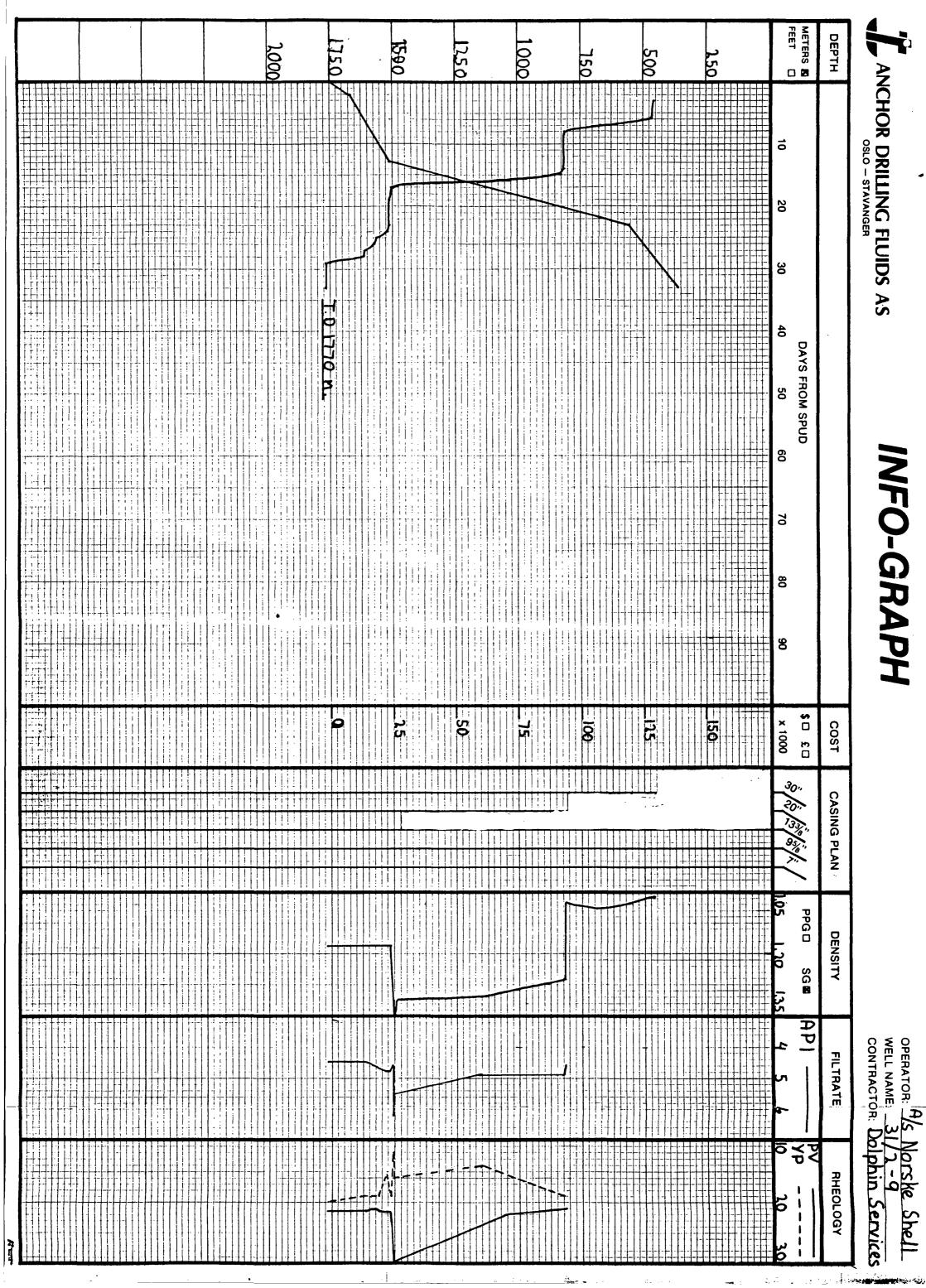
Drilling Mud Properties Record

ENGINEERS _ OPERATOR WELL NAME C. BLANCHARD/ P. T. SKADBERG/ C. ATKINSON A/S NORSKE SHELL 31/2-9 RIG. BORGNY DOLPHIN AREA NORWAY, N. SEA

MUD SYSTEM	TEM	\ <u>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</u>	C1-POI	KC1-POLYMER/	-	WATER/	SEAWATER/DRISPAC	Ö						ENGINEERS	ERS	C. BL	BLANCHARD/	P.	T. SK	SKADBERG/ C.	l	ATKINSON	SON
Day DATE	TE DEPTH	H									3	MUD PRO	OPERTIES										ļ
į.			,	$ \cdot $	VISO	VISCOSITY	1	GELS/	7			Filt	Itrate Analysis		RETORT	1	BL		14				
	FEET METERS	<u>8 </u>	PPG S	91	os .	s		S 30 A :	15 DM	P cc's		DW	ME ME	, , , , , , , , , , , , , , , , , , ,	105	No	TE #/B	"/BB(- - - -	OPER	ATION F	OPERATION REMARKS
			NSITY	sec/	A.V. G	PVCD	P #/10	CAKE	/ '	H.T.H.	O.	Crox		% O,	% SOL	% SA.	ACT COTASA	POLYME					
198	982		01				!	FLL			2000		_		1	8							
15 10	.9 825		26 48	30	21	19	5 4	9		12	63	60	1 87	9	1	2	34 -		6	7			
16 11	.9 1154	-	30 52	31	24	14	4	9		11 2	64	180	.3	12	₩	6	₩ ₩		7 46	6			
1712	9 1504	-	31 57	7 39	ω	16	11 5 5	5			69	120	25	15		15	υ ₅	.72	2 . 49	9_			
18 13	.9 1504	,	36 52	31	30	12	7 6	2		11.0	64	100	201	16	25	19	39	. 82	2 36	6			
19 14	.9 1509		35 52	2 37	30	14	6.	0		10.4	71	120	45	15	თ	23	35	.75	5 .61	→			
20 15	.9 1509		18 5	3 26	26	19	4 9 4	4 1		10.7	48	180	2.95	8	ij	11	23	.66	6 1.0	<u> </u>			
21 16	.9 1509		18 50	30	22	16	4 3	6		10.4	45	140	7.6	œ	id B	11	17	.65	50.9				
22 17	.9 1509	<u>-</u>	+ 18 49	30.5	23	15	4 3	6		10.4	47	120	17/0	8	IJ R	11	17	. 68	8 0.58	8 0-			
23 18	.9 1509	-	+ 18 49	9 30.5	23	15	ω 4 ω	6		10.4	47	120	12/2	8	117		17	-68	8 58	<u>φ</u>			
24 19	.9 151	18 1.	18 50	28.	5 21	15	4 3	8		11.2	44	100		8	Ħ	11		.71	1 .57	7			
25 20	.9 156	ω 	18 50	32.	5 23	19	5 3	7 1		11.4	45	80	Z S	8	TR	11		.65	5 . 77	7			
26 21	.9 1573	73 1.	18 50	31.	5 22	19	5 ω	6		11.4	43	80	15 25 15 25 15 15 15 15 15 15 15 15 15 15 15 15 15	8	H	11		.67	7 . 80	<u> </u>			
27 22	.9 161	10	18 50	31.	5 22	- 19	4 3	5		11.4	44	80	K PA	温	围	12		. 66	6 89	9			
28 23	9 1616	<u> </u>	18 51	33	23	20	3 4 3	5		1	43	80	25 Z	R \ 8	178	11.5		99.	6 95	5			
REMARKS	KS																						

Drilling Mud Properties Record

WELL NAME 31/2-9


AREA NORWAY/ N. SEA

OPERATOR C. ATKINSON A/S NORSKE SHELL RIG BORGY DOLDHIN

ğ L	 				 <u>u</u>	ω 4	33	32	31	80	29			Day No.	
REMARKS					30.9	29.9	28.9	27.9	26.9	25.9	24.9	1982		DATE	
							1430	1770	1770	1770	1770		FEET	DEPTH	
<u> </u>							1.18	1.18	1.18	→ -	1.18		<u> </u>		
\mid							8 48	B 50	8 50	8 50	8 50	DENSITY E	PPG D		
	 	_ 					33	33	33	33	ယ္ထ	sec/9/			
							23	23	23	23	23	A.V. Cps	VIS		
		-					20	20	20	20	20	P.V. Cos	VISCOSITY		
							2 4	W A	4	. 4	u L	Y.P. #1100	9.11.		
							3.6	ω δ	3.6	3.6	ω 5		\sim		
								-		-	-	FLUIDLOSS 3	O Min CC'		
												/ %	n~		
							11.6	11.4	11.4	11.4	11.3	HTHP	cc's		
	 						41	41	41	41	41	×10		_	
		-					80	80	80	80	80	Co	FE	MUD PR	
							1.15	5	9 5	.85 0	.85	Ca. ++ ph	Itrate Analysis	OPERTIES	
												PIM		ES	
							æ	8	8	8	8	% O/L			
							1/4	1/4	1/4	1/4	1/4	% SOL11	RETORT &		
							11	1	11	1	11	% SANI BENTO			
												BENTONITA POTAS	E #/88L		
												104	* .		
			<u> </u>				65	. 66	66	.66	. 66	POLYMER	*/88L		
	 						.98	.95	<u> </u>	95	.95	Z			
												, , , , , , , , , , , , , , , , , , ,			
												OPERA HON REMARKS		<u> </u>	
												I ON R			
												EMARK			

NFO-GRAPH

OPERATOR: A/S
WELL NAME: 31
CONTRACTOR: D 1/s Norske Shell 31/7-9 Dolphin Services Shell

<u> </u>	³	REVIEW	PLIKE	Ď	_	WELL	#: 31/2-9	RIG:	197	BORGNY DOLPHIN	LPHIN	MUD		PUMPS: CONTINENTAL		NEWE	IL EMSCO
DATE HOLE SIZE	m HI430	CIRC. PRESS.	SZ	SPM	**	34VI	NOS.	M/Eit	HRS	ACC.	M/hr	D 20	C DP C	CSG ¥	WT.	ECD	COMMENTS
28.8 17}	460	2220	63	190	3-1	DGJ	4 x 14	96	16	16	6				_		
$1.9 \frac{14}{3/4}$	465	2400	$6\frac{1}{2}$	190 R	हुत 2	DSJ	14,14, 14,14,	5	eg-	2⊩	10					<u></u>	Drl.cement w/26" H/O
$\begin{array}{c c} & 14 \\ 2.9 & 3/4 \end{array}$	£16	3050	6}	200	ω	DGJ	14,18, 14,14	351	181	18 }	19			<u>.</u>	.09		
n n 14 3/4	816	1750	6}		3 RRG	DGJ	20, 20 20, 18		22 }	22 }				>	1.08	מל	Run w/under-reamer
4.9 26"	816	1800	6}			OSC- 3A	22,22,22		2	-					ï	R	Ream✓ trip 26" hole
9.9 175	1506	3300	6}	200	4	OSCIG J	,18,	690	32	32	22			-1	35		•
171	1509	3200	6}		유 4		r -	3	N⊩	32 }	6						
12 19.9 1/4	1554	3100	6}	140	5	SDGH	14,14,15	45	7 }	7 ½	6				18		
20.9 C }	1563	900	6}		L	Core bit		9							18		
∀ ⊢	1573	900	63	50	RH. 6	= =		10									
8.	1591,5	900	63	50	₹ 6	= =		18,5									
& 3 <u>1</u>	1610	950	6}	50	36	= =		18,5						-			
€ 3	1628	950	6 }	50	RR RR	= =		18									
12 23.9 · 1/4	1730	3100	6 }	110	ヌ 5	SDGH	14,14,12	102	10½		10						
12 24.9 1/4	1770	3100	6}	110	7	SDGH	14,14,12	40	9		7		ļ 		.18		
														_			
ANCHOR	İ.	DRILLING	FLUIDS	IDS													

.....

in while the second