Denne rapport tilhører

L&U DOK. SENTER

L. NR. 20084270162

KODE Well 31/2-10 Nr 7

Returneres etter bruk

June 1983

RKER.83.085

GEOCHEMICAL INVESTIGATION OF THREE CORE SAMPLES AT 1577.7, 1585.0 AND 1590.0 M FROM WELL 31/2-10, NORWAY

by J.M.A. Buiskool Toxopeus and J. Posthuma

Sponsor: Shell Forus EP Code: 774.103

This **CONFIDENTIAL** report is made available subject to the condition that the recipient will use the information contained therein for his own business only and will not divulge it to third parties without the written authority of the sponsoring party.

KONINKLIJKE / SHELL EXPLORATIE EN PRODUKTIE LABORATORIUM

RIJSWIJK, THE NETHERLANDS

June 1983

RKER.83.085

GEOCHEMICAL INVESTIGATION OF THREE CORE SAMPLES AT 1577.7, 1585.0 AND 1590.0 M FROM WELL 31/2-10, NORWAY

by J.M.A. Buiskool Toxopeus and J. Posthuma

Sponsor: Shell Forus EP

Code: 774.103

Investigation 9.5.4099

With cooperation from P. Lohbeck

This CONFIDENTIAL report is made available subject to the condition that the recipient will use the information contained therein for his own business only and will not divulge it to third parties without the written authority of the sponsoring party.

Copyright is vested in Shell Research B.V.

KONINKLIJKE/SHELL EXPLORATIE EN PRODUKTIE LABORATORIUM

RIJSWIJK, THE NETHERLANDS

(Shell Research B.V.)

CONTENTS

			1 45 6
1. Results	and	Dicussion	1
2. Conclus	ions		2
Tables	1-3	Geochemical data of rock extracts	
Figures		Gas chromatograms of saturated hydrocarbons C-15 and C30 ring distributions	
	7-8	Sterane and triterpane fragmentograms	
	q	Maceral analysis	

GEOCHEMICAL INVESTIGATION OF THREE CORE SAMPLES AT 1577.7, 1585.0 AND 1590.0 M FROM WELL 31/2-10, NORWAY

1. RESULTS AND DISCUSSION

Geochemical analysis of the following three core samples from the Upper Jurassic Kimmeridge Clay Fm. of well 31/2-10, Norway, has been carried out:

1577.7 m

1585.0 m

1590.0 m

The results are shown in Tables 1-3 and in Figures 1-9. The results indicate the following:

1.1.

All three selected samples are fairly good to good source rocks for oil and gas (organic carbon contents; extract/carbon ratios; pyrolysis sniff values between 150 and 440 units; maceral analysis, Fig. 9; 'kerogenous' to 'mainly kerogenous' type of organic matter.

1.2.

The extracts of the samples are immature (gaschromatograms, Figs 1,3,4; sterane/triterpane fragmentograms, Figs. 7-8; grosscompositions).

All three samples were heated for further typing. However, the heating experiment for sample 1585.0 m failed and, since no material was left, no results are available.

1.3.

The shape of the gaschromatograms of the heated samples 1577.7 and 1590.0 m indicate the presence of structureless organic matter – SOM – (Figs. 2,5). The SOM is of bacterially reworked phytoplanktonic origin (C_{27} – C_{29} distribution of the sterane fragmentograms, Figs. 7-8). No indication for a

significant amount of landplant derived organic matter could be detected. There is a large variation in sulphur contents in the original samples (9.0-18.9%). The significance of this variation is not known.

1.4.

Geochemically, the three extracts are very similar to each other and also very similar to three core extracts from well 31/2-2 (gaschromatograms; sterane/triterpane fragmentograms; gross compostions; carbon isotope values). The difference in sterane distribution between the samples in wells 31/2-2 and 31/2-10 and the samples from wells 15/3-1, 24/9-10

1 and 2/11-1 is explained by maturity differences.

The extracts are similar to an average North sea crude oil with respect to their gaschromatograms and sterane distributions. The carbon isotope value of -29.8 to -30.0 $^{\circ}/oo$ (heated samples), however, are somewhat lighter compared to the mean for crude oils from blocks 30,31,34 and 35 (-29.0 $^{\circ}/oo$).

2. CONCLUSIONS

Three core samples from the Upper Jurassic Kimmeridge Clay Fm. of well 31/2-10, Norway, at 1577.7, 1585.0 and 1590.0 m are fairly good to good source rocks for oil and gas. The extracts of the samples are derived from predominantly structureless organic matter (bacterially reworked phytoplankton). No significant landplant contribution could be detected in the extracts.

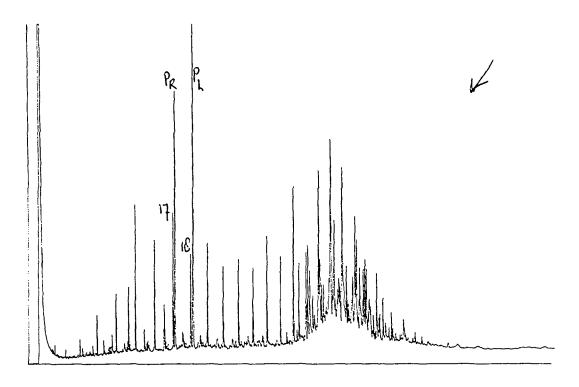
Geochemically the three extracts are very similar to each other and also very similar to three core extracts from well 31/2-2. The extracts are of the same broad type of organic matter as that of an average North Sea crude oil. The carbon isotope values (-29.8 to -30.0 o/oo), however, are slightly more negative compared to those of crude oils from blocks 30,31,34 and 35.

Table 1 - GEOCHEMICAL DATA OF EXTRACTS

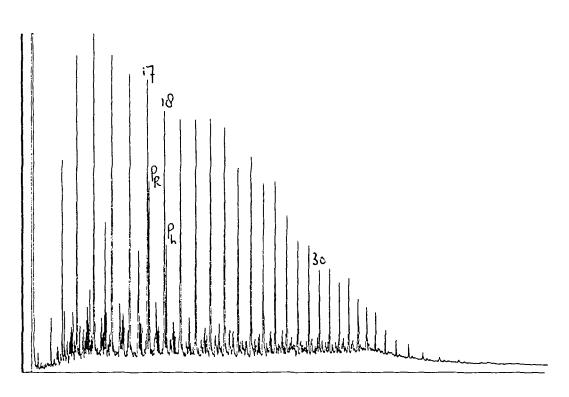
	Norway 31/2-10 1577.7 m Core 1 Original	Norway 31/2-10 1577.7 m heated
% ethyl acetate extract	0.35	2.56
% organic carbon after ethyl acetate extraction	5.3	2.7
% sulphur	9.0	3.2
ppm V as metals ppm Ni as metals	-	2 6 7 4
pristane/phytane	0.8	1.7
pristane/nC17	2 • 1	0.6
phytane/nCl8	3 • 4	0 • 4
C ₁₅ distribution 1-ring 2-ring		
C ₃₀ distribution 3-ring 4-ring 5-ring		
C ₂₉ DOM		
<pre>% saturates* % aromatics % heterocompounds</pre>	10 31 59	16 38 46
δ ¹³ c°/00	n.e.	-29.8
extract/carbon	0.07	0.95
extract/original carbon	-	0.48
% saturates per original organic carbon	0.66	7.73

^{*)} determined by thin layer chromatography
n.e. = not enough sample material

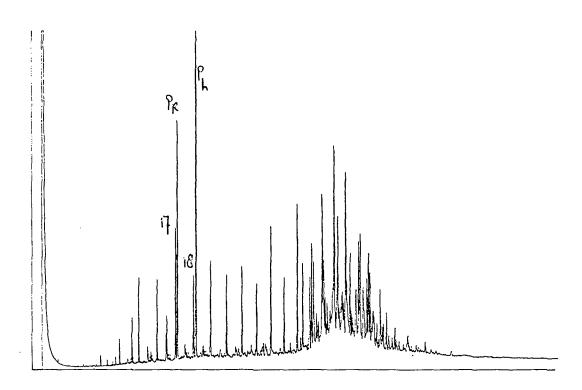
Table 2 - GEOCHEMICAL DATA OF EXTRACTS


	Norway 31/2-10 1585.0 m Core 2 Original
% ethyl acetate extract	0.27
% organic carbon after ethyl acetate extraction	3.5
% sulphur	18.9
ppm V as metals ppm Ni as metals	-
pristane/phytane	0.6
pristane/nCl7	1.9
phytane/nC18	4 • 4
C ₁₅ distribution 1-ring 2-ring	
C ₃₀ distribution 3-ring 4-ring 5-ring	
C ₂₉ DOM	
<pre>% saturates % aromatics % heterocompounds</pre>	1 2 2 3 6 5
δ ¹³ C°/00	n.e.
extract/carbon	0.08
extract/original carbon	-
% saturates per original organic carbon	0.93

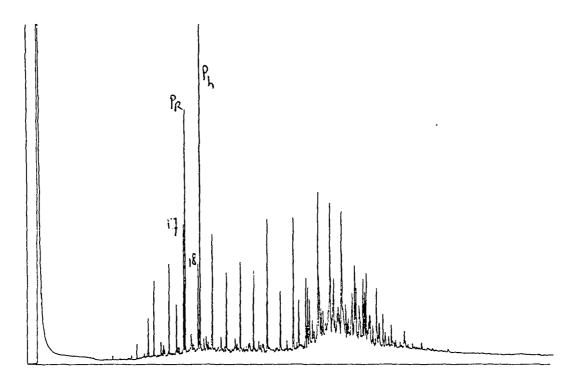
^{*)} determined by thin layer chromatography
n.e. = not enough sample material


Table 3 - GEOCHEMICAL DATA OF EXTRACTS

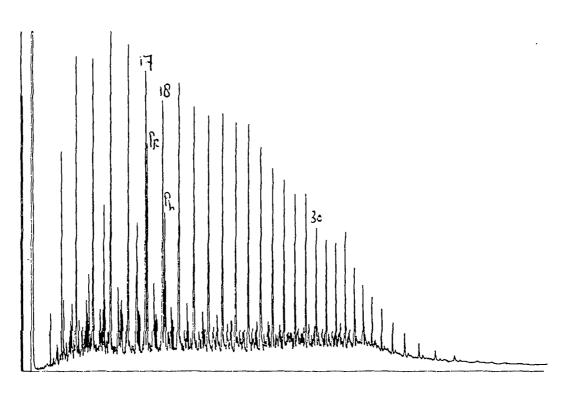
	Norway 31/2-10 1590.0 m Core 2 Original	Norway 31/2-10 1590.0 m heated			
% ethyl acetate extract	0.26	1.46			
% organic carbon after ethyl acetate extraction	3 • 0	1.6			
% sulphur	17.1	2 • 6			
ppm V as metals ppm Ni as metals	- -	10 62			
pristane/phytane	0.6	1 • 5			
pristane/nCl7	1.9	0.6			
phytane/nCl8	3.9	0 • 4			
C ₁₅ distribution 1-ring 2-ring					
C ₃₀ distribution 3-ring 4-ring 5-ring					
C ₂₉ DOM					
<pre>% saturates* % aromatics % heterocompounds</pre>	1 0 2 2 6 8	1 2 3 8 5 0			
δ ¹³ c°/00	n.e.	-30.0			
extract/carbon	0.09	0.91			
extract/original carbon	-	0.49			
% saturates per original organic carbon	0.87	5 • 8 4			


^{*)} determined by thin layer chromatography n.e. = not enough sample material

GAS CHROMATOGRAM OF SATURATED HYDROCARBONS FIG. 1. NORWAY. 31/2-10 1577.7 M. CORE#1



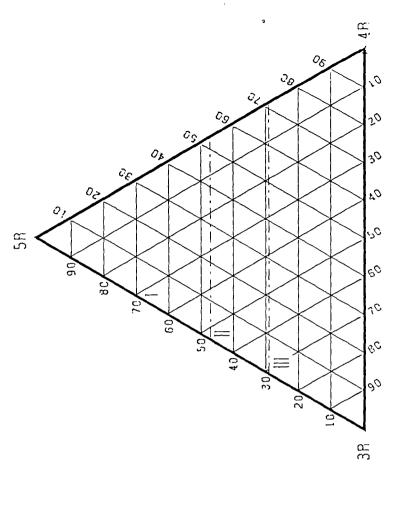
CAS CHROMATOGRAM OF SATURATED HYDROCARBONS FIG. 2. NORWAY. 31/2-10. 1577.7 M CORE-1 heated



CAS CHROMATOGRAM OF SATURATED HYDROCARBONS

F10.3, NORWAY: 31/2-10 1585.0 M. CORE#2

GAS CHROMATOGRAM OF SATURATED HYDROCARBONS FIG. 4, NORWAY: 31/2-10 1590.0 M. CORE#2



CAS CHROMALOGRAM OF SALURALED HYDROCARBONS FIG.5. NORWAY, 31/2-10 1590 M CORE-2 heated

C30-RINGDISTRIBUTION

C15-RINGDISTRIBUTION

38

LANDPLANT-DERIVED CRUDES WITH SUBSTANTIAL RESIN CONTRIBUTION TO SOURCE MATTER

7. ZR

رز

30

_kO

30

10

Ξ

CRUDES OF MIXED ORIGIN

CRUDES DERIVED FROM SOM GNOZOR GLGGL MATTER

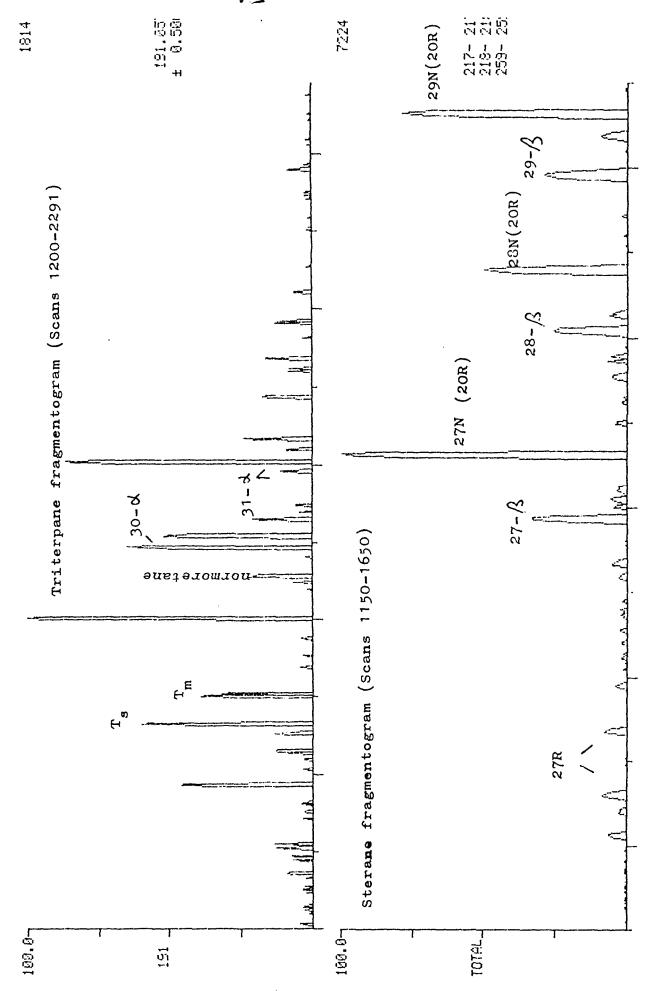


FIG. 7. GC-MS analysis 31/2-10, 1577.7 m.

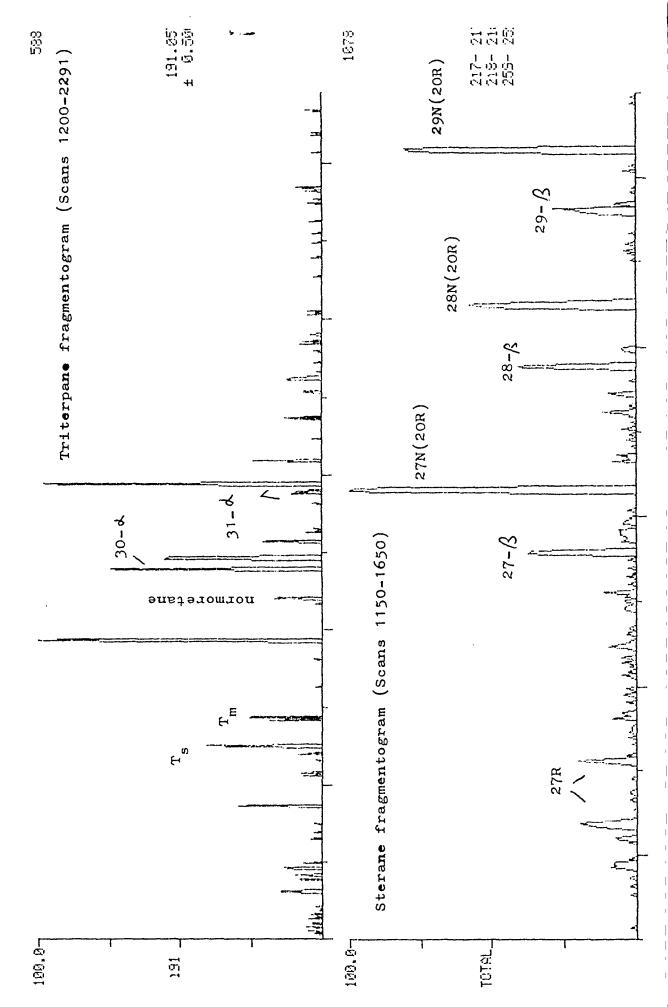


FIG. 8. GC-MS analysis 31/2-10, 1590 m.

MACERAL DESCRIPTION OF 14 SAMPLES FROM WELL 31/2-10, NORWAY

ORGAN!C

INCAG.

		UHUHN! L							עווטאן.									
		VITA. LIPTINITE INERT.							I.	1			Ì					
DEPTH	SAMPLE	SAPROPELLC BRS. M911EB		DESMECOLLINITE	1	CULINITE	RESINITE LIPTODEIGINITE	actarecoceus	14ER 91 68E	F1X1	1.08 IN I	11			2	DR! PYR!TE	56125 3F	
IN M	TYPE	5	-		5	<u> </u>	داے	اريا	_ c:	Σ	النا	ا (ب	⊥ ≥	~	ات	4		اد
			, ;		·			 r		.								- -,
1575.7	CORE	+		-			+			+			-	+	*	+	4	-
1576.7	CORE	+	1	-			+			+			-	+	*	+	/	-
1577.7	CORE	+		-			+		/	+			-	/	*		4	-
1578.7	CORE	+		-	-	-	+		-	+			-	/	*		-	-{
1579,8	CORE	+		1			+		/	+			-	/	*		-	-
1580.7	CORE	+		-			+		-	+			-	+	*		4	-
1585.0	CORE	/		/	-		+		-	+			-	-	Ж		-	-
1586.0	CORE	-		/	-		/						-	-	*		-	-
15869	CORE			/	'¦ -		+		-				-	-	*		/	-
1588.0	CORE	/		/	-		+	}	~	+			-	-	*		-	-
1589.0	CORE	/		/	-		/		-	/		-	/	-	*		4	-
1590.0	CORE	+		/	-		+		-				/	+	*	+	/	/
1590. 9	CORE	+		-	-		+			/			-	+	*	+	+	/
1592.0	CORE	+		/			+		-	+			/	+	*	/	/	-

L	E	G	E	Ni	D	
* + / -	:	C (401	T N F	٠

INITIAL DISTRIBUTION

5 copies

3 copies

Shell Forus ep epxt/31
SIPM EP-11/13