		Denne rapport tilhører
	5 <u>5</u> F	L&U DOK. SENTER
		L. NR. 20084280018
na an ann an ann an 1970. Tha ann ann an Air ann an Air Air ann an Air ann an A Air	MAGCUBA	KODE Well 31/2-13 nr.13
- A/S NORSKE SHELL	٦	Returneres etter bruk
OPERATIONS BASE		(04) 69 60 33
AKER NORSCO BASE		TELEX 331 67 - DRENO- N
4056 TANANGER	. د	TANANGER, 22.05.84
Attn: A. Kelland		Ref.no. DRNG/177/84/KE/sgh
CC : I. Nyland		

Dear Sir,

J. Bysveen

Please find enclosed our Drilling Fluids. Summary for Well 31/2-13 which was drilled using our low toxicity oil based mud system, Faxekleen.

We trust you will find the information contained within, our comments and recommendations of interest and of benefit to your drilling operations.

On behalf of Dresser Norway A/S, thank you for the opportunity to have serviced this well. Should you or your colleagues have any queries please do not hesitate to contact us.

Yours Jaithfully,

Ken El ...s

Area Eruineer Dresse: Norway A/S A/S NORSKE SHELL OPERATIONS BASE AKER NORSCO BASE 4056 TANANGER Attn: A. Kelland CC : T. Nyland J. Bysveen NORSCO OIL BASE N 2056 TANANGER PHCNE (04) 69 60 33 TELEX 33 1 68 - •DRENO- N

TANANGER, 22.05.84 Ref.no. DRNG/177/84/KE/sgh

J

Dear Sir,

Please find enclosed our Drilling Fluids Summary for Well 31/2-13 which was drilled using our low toxicity oil based mud system, Fazekleen.

411 ST 6

DRESSER NORWAY A.S. MAGCOBAR

٦

L

We trust you will find the information contained within, our comments and recommendations of interest and of benefit to your drilling operations.

On behalf of Dresser Norway A/S, thank you for the opportunity to have serviced this well. Should you or your colleagues have any queries please do not hesitate to contact us.

Yours faithfully,

Ken Ellis Area Engineer Dresser Norway A/S

INDEX

- 1) SUMMARY BY INTERVAL
- 2) MUD SYSTEM, COMMENTS AND RECOMMENDATIONS
- 3) DAILY OPERATIONS LOG
- 4) COST BY INTERVAL
- 5) TOTAL COST AND PRODUCT & OF TOTAL COST
- 6) DAILY MATERIAL CONSUMPTION
- 7) DAILY MUD PROPERTIES
- 8) DAILY MUD VOLUMES
- 9) GRAPHS
- 10) BIT RECORD
- 11) CUTTINGS ANALYSIS

| | |

L

Shell, 31/2-13

SUMMARY BY INTERVAL

SUMMARY BY INTERVAL

36" Hole - 30" Casing

Mud Type: Spud Mud

RKB - 468m

After the temporary guide base was run three days were spent waiting on weather.

The 36" Hole was then drilled to 419m and displaced with 250 Bbls gel slurry.

Weather again delayed progress. While attempting to stab into the hole, the drill string parted. The fish was retrieved without problems and drilling resumed, at 431m a survey was taken (1^{\circ} Deviation). T.D. was reached at 468m and a wiper trip made. After displacing the hole with gel slurry the 30" casing was run and cemented without problems.

SUMMARY BY INTERVAL

26" Hole 20" Casing

Mud Type: Spud Mud

468m to 825m

The 30" casing shoe was drilled on and formation drilled to 473m. The bit was pulled to surface, and the B.O.P's and riser run. The 14 3/4" Pilot hole was then drilled to 500m while displacing mud. A trip was made and a directional drilling assembly run. Drilling resumed to 583m, building a $1\frac{1}{2}$ ° deviation. Time was lost to waiting on weather.

Drilling resumed to 750m building a 12 1/4" angle. The hole was opened out to 26", 20" csg was run and cemented without problems, the hole having been displaced to a 1.3 s.g. slurry.

SUMMARY BY INTERVAL

17 1/2" Hole - 13 3/8" Casing

Mud Type: Fazekleen

825m - 1710m

Whilst running and testing the B.O.P. equipment and riser, 1900 Bbls Fazekleen were mixed and weighted up to L30S.G. After waiting on weather a new bottom hole assembly was made up, cement was drilled to 806m and circulated out.

The hole wes reamed to 813m and displaced to Fazekleen with a 50 Bbl spacer ahead. After making up a new bottom hole assembly 17 1/2" hole was drilled to 819m and a 1.80 S.G. leak-off test was performed. New 17 1/2" hole was drilled to 1134m with wiper trips at 890m and a bit trip at 943m, afterwards, surveys were made at 30m intervals. When RIH after drilling to 1134m tight hole was experienced at 1117m and 1070m.

With the onset of bad weather conditions, the riser was displaced to seawater, the hang-off gear was picked up and the drill string was prepared to be hung off. After redisplacing to mud, RIH and washing 60m to bottom the mud weight was increased to 1.40 S.G. New hole was drilled to 1537m where the hole packed off after a survey.

After working pipe through a tight spot at 1381m, POOH to shoe, RIH and washing to bottom from 1489m new hole was drilled to 1631m. After a 10 stand wiper trip the hole was drilled to 1710m, circulated, surveyed and logged. During this time the mud properties were maintained by adding premixed mud with water to dilute solids, and maintaining the proper oil/water ratio as per the operator's request. 13 3/8" casing was then run and cemented without problems.

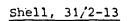
SUMMARY BY INTERVAL

12 1/4" Hole - 9 5/8" Csg

Mud Type: Fazekleen

After drilling through the 13 3/8" casing shoe and rathole a leak-off test was performed to 1.61 S.G. Operations continued by drilling ahead to 1744m and working the junk basket incorporated in the string while circulating prior to POOH.

The mud weight was reduced to 1.25 S.G. whilst drilling out the cement and float shoe.


Coring operations were begun at this point with 8 cores being cut in all. Frequent tripping of pipe occured during coring operations and consequently a large amount of barite was being used for slugs and incorporated into the mud system. Coring data is as follows:

CORE	RECOVERY &	METERS DRILLED
1	4	10
2	20	18
3	90	12
4	100	11
5	94	12
6	100	6
7	94	12.5
8	82	18.5

Having cored to 1844m drilling operations were resumed. Some tight hole was experienced in reaching 1946m with a conventional assembly.

The weather deteriorated at this point and the string was hung-off. The riser was displaced to seawater and unlatched.

Cont'd....

DRESSER NORWAY A.S.

Cont.

When the weather improved again the riser was displaced back to O.B.M. and the string retrieved and POOH. After changing the bit, drilling continued to T.D. without incidents. The hole was logged and then 9 5/8" casing was run and set at 1999m.

The surface O.B.M. was backloaded at this point. A Dowell spacer was used to displace the O.B.M. inside the 9 5/8" csg and this volume was then backloaded. All pits and lines were then thoroughly cleaned in preparation for the brine system being used during the testing period.

SECTION 2

MUD SYSTEM, PERFORMANCE, COMMENTS AND RECOMMENDATIONS

36" and 26" Holes

These intervals were drilled with seawater and viscous pre-hydrated bentonite slurry. Hole conditions were good, logs and casings were run without problems.

17 1/2" Hole

This interval was drilled using Fazekleen, low toxicity invert oil emulsion mud, based on Shell Sol D70 oil.

(i) <u>Mixing</u> - The mud was mixed to the formulation proposed in Dressers tender and also in the mud programme for this well. The shear lines were used whilst mixing with approximatly 2000 psi on the mud pumps. This raised the temperature of the mud to +/- 120°F. The oil and products went together well to form a stable emulsion giving the required mud properties.

As an experiment one batch of mud was mixed without the shear line being used. On checking the mud properties it was found that both emulsion stability and yield point were some 40% lower than when the shear line had been used, product concentrations were the same for all batches mixed. Once sheared, the mud properties were similar to those of the mud mixed with the shear gun.

(ii) <u>Mud Properties</u> - Mud properties were controlled within the required ranges without problems. The formulations used gave a stable mud system that required very little treatment to the active system other than small daily maintenance with primary emulsifier, oil wetting agent and lime.

The activity of the mud was run higher than what had been programmed, i.e. $+'_{-}$ 0.88 rather than 0.85. It was noted that on drilling ahead the

Cont'd....

Cont.

activity increased as did the water content, this indicated that water was being drawn from the formation. Treatments of $CaCl_2$ to lower the activity to 0.85 achieved the desired result for a short period before it increased again along with the water content. The activity of the mud remained steady at +/- 0.88, as this was giving good firm cuttings, across the shale shakers it was allowed to stabilize and remain in this range.

Oil water ratio was maintained in the range of 80/20 as programmed. Tests performed by Dresser, prior to drilling this well, had indicated that O/W ratio, using Shell D70, gave a mud that had an acceptable increase in viscosities at low temperatures i.e. $20^{\circ}C$ and below. Higher O/W ratios than 80/20 did_reduce the viscosity increase at low temperatures but only slightly and not enough to justify the increased cost from a higher oil content.

Due to the low flowline temperatures experienced on this location concern was expressed over flowline viscosity being very high when using an oil mud, resulting in problems at the shale shakers and mud cleaners. In fact this was not a problem, selection of Shell D70 which had a low viscosity and the correct O/W ratio contributed to minimising viscosities at the flowline as a result of low temperature.

Flowline temperature was actually $+'_{-} 32^{\circ}C$, considerably higher than the $20^{\circ}C$ previously experienced with water based mud. Higher flowline temperatures with oil based have been experienced before on other wells where water based mud were used previously. It has also been noted that when low toxicity oil muds are used to replace diesel oil muds, flowline temperatures are generally higher than previously experienced.

As stated, very high viscosities at the flowline were not experienced, even after trips and logging. Viscosities were not excessive to the point where they caused problems, once circulation was established the viscosity dropped very guickly to normal levels. It was observed that viscosity returned to normal levels before the temperature reached the +/- 32^OC range, thus indicating that the guick reduction in viscosity to normal circulating Cont'd....

Cont.

levels after static periods, was more a function of shear than temperature.

When using an oil mud funnel viscosity will generally be higher than a water based mud for a given density, solids content, P.V. and Y.P. etc. Drilling personnel on the rig tended to compare mud viscosity to that of the KCl water based mud previously used rather than use the P.V. and Y.P., at the standard 115° F, as a measure of mud performance. On several occasions discussions on the mud's funnel viscosity took place, generally that it was too high, when P.V. and Y.P. had not changed and were well within the required range.

Mud rheology was easily maintained within the desired range by adding pre-mixed mud of known product concentrations and properties, small additions of organophillic clay were made occasionally to maintain the Y.P. Adding pre-mixed mud in this way is by far the best way of running an oil mud system as it ensures that all the properties remain within the required ranges, as was the case with fluid loss, and stability as well as the other properties previously mentioned.

Small daily maintenance treatments of D.F.L. (primary emulsifier), DV-33 (oil wetting agent) and lime were made to the active system to maintain a good emulsion, oil wet solids and the correct alkalinity respectivly.

The solids content of the mud was controlled at quite low levels, low gravity solids were generally in the range of 40-50 ppb. Oil muds tend to generate larger cuttings than water based muds, that do not disperse into the system. This can make primary removal of cuttings at the shale shakers much easier with oil based muds than with water based muds.

Drilling personnel on the rig suggested that the solids content of the mud was too high on several occasions, again the yardstick being a KCl/ polymer water based mud. It was pointed at that the liquied phase of a 35 ppb KCl/polymer mud has a density of approximately 1.06 S.G. where Cont'd...

Cont.

as the liquid phase of the oil mud (combined oil at 0.79 S.G. and Cacl₂ at 1.14, 80/20 ratio) has a density of approx. 0.86 S.G. For a given mud density e.g. the 1.4 S.G. used at T.D., the extra baryte required to achieve the required density, in this type of oil mud, would be approx. 3% by volume thus giving a much higher solids content than that of a KCl/polymer water based mud.

In summary, the Fazekleen low toxicity oil based mud provided a very stable mud system that required little treatment to maintain the required mud properties.

(iii) Oil muds will generally give a gauge hole and much larger cuttings which, due to their size, will settle very quickly. With directional well the cuttings have only a short distance to fall, depending upon hole angle
(which was upto 45[°] in this case) to the bottom side of the hole. On trips, connections and surveys accumulations of cuttings can easily result in stuck pipe and packing off.

The importance of circulating cannot be overemphasised when drilling directional wells with oil muds, especially in the 17 1/2" section. Circulating should not be considered as time lost, it will often save time by reducing tightchole on the way out and washing/reaming on the way back in.

12 1/4" Hole

The mud density was reduced from 1.41 S.G. to 1.25 S.G. to drill this interval. As the centrifuge was not working this was done by dilution with new mud. Excess volume was taken off the rig for storage in Dresser's onshore liquid mud plant. Mud properties were maintained in the required range without problems, once the centrifuge was operational it was very effective in keeping down mud density thus reducing dilution requirements.

Solids Control Equipment

The finest screens possible were fitted to the shale shakers that would allow for minimum mud losses with cuttings yet still give good primary solids removal. The mud cleaners were also fitted with the finest screens possible with regard to the need for a relatively dry cutting discharge.

The centrifuge was installed for this oil mud job, not only to improve overall solids control efficiency but also to aid in cutting back mud density for the 12 1/4" hole thus reducing dilution requirements.

The installation was carried out by the drilling contractor and on first apperances all seemed to be in good order. However, when the centrifuge was switched on it was found that the solids discharge arrangement was inadequate. and that the solids were "backed up" into the centrifuge thus summing the machine making it inoperable.

The solids discharge was re-arranged and a centrifuge specialist flown to the rig, by the time the centrifuge was operational the 12 1/4" hole was being drilled and the mud density had been reduced by dilution. As stated, however, the centrifuge was very effective in keeping down mud density on the 12 1/4" interval.

Should the installation of a centrifuge be necessary for other wells in the future a specialised solids control equipment company should be considered.

Cont'd...

Cont.

It would also be advisable to have a service engineer available for several days to oversee the start up and solve "teething troubles".

Logistics

The provision of extra base oil storage in the form of two deck tanks giving approx. 700 Bbls of extra storage proved invaluable. In fact, without them supply and storage of the base oil to meet drilling requirements would have been impossible. The tanks were also used to store unweighted pre-mixed mud, this being pumped back to the deck tanks after being mixed in the mud pits.

. .

- -

DAILY OPERATIONS LOG

DRESSER NORWAY A.S. MAGCOBAR

Shell, 31/2-13

DAILY OPERATIONS LOG

28 December 1983

Dresser Mud Engineer arrived on Borgny Dolphin at 1900 hrs. The rig was under tow and waiting on weather to proceed to the well location.

29 December The rig was moved on to location; anchors were run.

30 December

The rig was ballasted down and anchor tested. Drill collars, heavy weight drill pipe and ordinary drill pipe was picked up. The temporary guide base was loaded with 150 sxs Barite and prepared for running. Mixed 350 Bbls 3.3 ppb CMC-EHV with 0.3ppbSoda Ash for use as spud mud while waiting on drill water.

31 December

The temporary guide base was run. Wait on weather to spud. Made up 795 Bbls gel slurry. Approx. 45 ppb to be diluted and flocculated with lime for use as spud mud.

1 January 1984 Wait on weather.

2 January

Wait on weather. RIH. Drill to 397m. Drilled with CMC and then seawater. Pumped approx. 30 Bbls flocculated gel slurry after drilling each single.

3 January

Drilled to 419m. Displace hole with 260 Bbls gel slurry. POOH. Wait on weather. DRESSER NORWAY A.S. MAGCOBAR

> 4 January Depth: 419m Wait on weather. While attempting to stab into the temporary guid base the bottom hole assembly parted after hanging up in the funnel of the base. The 26" bit, 36" hole opener and two 9 1/2 Drill collars. fell across the temporary guide base. Worked on and completed shear device "skirt" in pit no.2.

5 January

Depth: 428m

The fish was recovered and a new bottom hole assembly was picked up and RIH. Drilled ahead to 428m.

6 January

Depth: 468m

Drilled to 431m. Survey 1°. Drilled to 447m. Displaced the hole with 360 Bbls gel slurry. POOH due to excessive heave. RIH. Drilled to 468m. Pumped 450 Bbls gel slurry. POOH to temporary guide base and experienced no drag. RIH and pumped 450 Bbls gel slurry. Survey 1°. POOH and rigged up to run 30" Csg.

Built 1400 Bbls gel slurry to be used in drilling 14 3/4" pilot hole. Mixed 150 Bbls CaCl, solution for 30" Csg cement.

7 January

Depth: 468m

The 30" Casing was prepared, run and landed. The hole was displaced from mud to seawater and the casing was set. Wait on cement 6 hours, while holding the casing in tension. POOH. RIH to wash wellhead. POOH. RIH with new bottom hole assembly to drill cement with 14 3/4" bit and a 26" hole opener.

Made up 350 Bbls gel slurry for 14 3/4" pilot hole.

Depth: 473m

Drill cement and new hole to 473m. POOH. Set riser. Pin connector.

9 January

8 January

Depth: 500m

Complete running riser. Pin connector and installing diverter. Test diverter. Repair flow line valve. RIH. Drill 14 3/4" hole to 500m while displacing hole to mud. Circulate 30 min. after drlg. POOH. No drag experienced. Prepare to RIH with directional drilling equipment.

10 January

Depth: 583m

RIH with directional drilling equipment. Drill 14 3/4" deviated hole to 583m. Building 1 $1/2^{\circ}$ deviation.

Built 350 Bbls gel slurry. Cutting became more sticky near bottom, indicating possible zone of reactive clays.

11 January

Depth: 750m

Wait on weather. RIH with directional equipment. Drill 14 3/4" hole 583m - 750m building 12 1/4[°] angle. POOH to change to conventional drilling bottom hole assembly. Bit, drill collars "balled". Used mud cleaner as desilters to maintain weight 1.15 S.G. Desilter discharge = 1.26 S.G. Built 700 Bbls gel slurry.

12 January Depth: 825m

Change BHA for rotary drilling. Drill to 825m (14⁰N4IW). Wiper trip. Displace open hole with 300 Bbls 1.35 S.G. gel slurry. POOH. Log. Wait on weather.

Depth: 825m WOW. RIH to 455m and displace to seawater.at 825m. Observed well - No flow. Pumped 400 Bbls. Viscous mud. Pumped slug. POOH. Rig up to pull raiser. WOW.

14 January

13 January

Depth: 473m

WOW. Pull riser assembly. Made up new BHA and rigged up guide frame. RIH and stabbed in. Rigged down guide frame and RIH. Open hole to 26" from 455 - 473m. Pumped 25 Bbl. Viscous sweep.

15 January

Depth: 782m

Continued reaming 26" hole from 473 - 775m. Pumping 25 Bbl. Hi-Vis sweeps. Conducted surveys at 574, 650 and 764m. Started drilling new hole. Pumped 300 Bbls. Viscous mud and POOH. RIH with new BHA and drilled from 775 - 782m. Pumped 300 Bbls. Viscous mud and POOH.

16 January Depth: 825m

RIH to 763m and wash to 783m. Reamed 26" hole from 782 -813m, and conducted wiper trip to 30" shoe. Pumped 200 Bbls. viscous mud once back on bottom. Spotted 1.35 S.G. Viscous mud in open hole and POOH. Rigged up and ran and cemented 20" casing.

17 January Depth:

825m

Concluded cementing 20" casing. Backed out running tool and POOH. Rigged up to run B.O.P's - WOW. Continued mixing OBM. Weighted up one pit to 1.30 S.G. Properties as reported. Adjusting YP to 15. Activity to .85 and alkalinity to 2.0 prior to displacement.

18 January

Depth: 825m

WOW. Ran riser and B.O.P's. Pressure test and function test to Shell specs. Mixed all surface volume together. Adjusted properties to those of programme.

19 January

Depth: 825m

Conclude B.O.P. test - OK. Run and set wear bushing. Made up new BHA and RIH. Drill out cement from 789 -806m and ream to 813m. Circulate hole, pump 50 Bbl. Spacer and displace to OBM. Pumped slug and POOH. Run Gyro multi-shot. Toll malfunctioned. POOH.

20 January

Depth: 971m

Made up new BHA. RIH. Drill 17 1/2" hole to 819m. Made leak off test. Breaking down at 1.80 s.g. equivalent. Drill ahead to 924m. Made wiper trip to 890m. Drilla ahead to 943m. POOH. RIH. No fill. Drillahead.

Observing the trend on activity before adding CaCl₂ to alter.

21 January

Depth: 1134m

Drilled to 1134m with surveys at 30m intervals. POOH to shoe. Worked tight hole 1117 to 1070m. Picked up hang off tool. Ran bit to shoe and prepared to hang off. Displaced riser to S.W.

Cuttings firm across shakers, will lower activity with depth, or as dictated by quality of cuttings.

Recommended circ. B.U. prior to surveys and control drilling to 30m per hour.

Depth: 1134m WOW. RIH, washed and reamed 60m to bottom.

Weighted up active system to 1.40 s.g.

23 January

22 January

Depth: 1300m

RIH, washed and reamed from 1117m - 1134m. Drilled to 1153m. POOH. Change BHA. RIH washed last stand to bottom. Drilled ahead.

Adding pre-mixed O.B.M. to maintain volume and properties.

Shaker screens B60 over B80 x 2 B100 over B120 x 1

24 January

Depth: 1410m

RIH with new BHA to 1220m. Washed and reamed 75m to bottom. Drilled to 1391m. Broke wire line during survey. POOH. Made up new BHA. RIH. Washed 60m to bottom.

Continued adding premix. Changed mud cleaner screens to 150 mesh.

25 January

Depth: 1584m

Drilled to 1537m. Hole packed off after survey. Worked pipe through tight hole to 1381m. Circ and POOH to csg shoe. RIH to 1489m. Circ. Washed to bottom. Drilled ahead.

Pumped 100 Bbls mud into formation shale shakers tripped casing loss of a 150 Bbls. Diluting mud to control solids.

26 January

Depth: 1710m

Drilled to 1631m. Circulated. Made 10 stand wiper trip. RIH to 1560m. Washed to bottom. Drilled to 1710m. Circ. POOH to 20" shoe. RIH. Washed down last 60m.Circulated.. Survey. POOH to log.

Added pre-mixed mud without water to active to increase oil.water ratio. Mud properties stable.

27 January

Depth: 1710m

Wireline logs. Made up casing hangar assembly. RIH to 1660m. Washed to bottom. Circulated hole clean. Slugged pipe. POOH. Rigged up to run 13 3/8" casing.

28 January

Depth: 1710m Ran and cemented 13 3/8" csg.

Made up spacer for cement.

29 January

Depth: 1710m

Pressure tested casing seal assembly. Laid down 17 1/2" bottom hole assembly. Ran B.O.P. test tool. Test B.O.P. Testing tool failed. Retest B.O.P. Set wear bushing. Tested kelly cocks. Made up new BHA. RIH.

Built 615 Bbls unweighted mud to reduce mud weight in system to 1.25 S.G.

30 January

Depth: 1749m

Drilled float collar. Cement 1688m - 1696m. Shoe and rathole to 1710m. Drilled to 1715m. POOH to shoe. Ran leak off test to 1.61 S.G. Drilled to 1733m. Circulated bottoms up. Drilled to 1744m. Circulated bottoms up. Worked junk basket. Took Gyro survey. Slugged pipe. POOH mud. Reduced mud weight to 1.25 S.G. While drilling float equipment and cement. Added Lime and Calcium Chloride to increase alkalinity and reduce activity. Used centrifuge to reduce solids and maintain mud weight. Allowed yield point to remain untreated as per operators instructions.

31 January

Depth: 1764m

Ran Gyro survey. Spaced out drill string. RIH to core no 1,11744 - 1754. Core barrel.jammed. Slugged pipe. POOH. Recover 4% core no. 1. Made up new core barrel. RIE to core no.2.

Maintained mud weight at 1.25 S.G. Yield point dropped to 9. Not treating as per operator's instructions.

1 February

Depth: 1784m

Cut core no. 2,1754m - 1772m. Slugged pipe. POOH. Recovered 20% core no.2. RIH for core no.3. RIH to core no. 4.

Adding VG-69 to active to increase yield point. Cuttings firm.

2 February Depth: 1813m

Cut core no. 4 to 1795m. Recovered 100% core. Cut core no. 5 to 1807m. Recovered 99%. Cut core no. 6 to 1813m. Cont'd...

Cont. 2 February

Core jammed. POOH.

Treated with Lime and Calcium chloride to increase alkalinity. Decrease activity. Ran centrifuge 90 mins. to maintain weight at 1.25 S.G. because of the frequent, heavy slugs for tripping.

3 February

Depth: 1844m

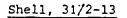
Recover 100% core no.6. RIh to cut core no. 7 to 1825m. Recover 94%. RIH to cut core no. 8 to 1844m. Recover 82%.

Maintain weight at 1.25 S.G. with centrifuge. Other properties stable.

4 February

Depth: 1946m

Made up new BHA. RIH. Drill to 1946m. Some tight hole. POOH 22 stands. Pick up and land hang off tooliin wellhead. Displace riser to seawater. Wait on weather.


Made up viscous spacer and ran ahead of seawater for _____ riser displacement. While drilling maintained weight with centrifuge and stabilize emulsion with DFL.

5 February

Depth: 1946m

Wait on weather.

Made up spacer of redisplacement of riser to mud.

6 February

DRESSER NORWAY A.S.

Depth: 2010m T.D.

Wait on weather. Relatch onto drill string. Displace riser to mud. POOH. Change bit. Drlg to 2010m. Circulate bottoms up. Survey 42[°]. POOH. Wireline log.

Maintained weight with centrifuge. Added DFL to maintain emulsion stability.

7 February

Depth: 2010m Wirèline logging.

Transferred base oil to slug pit for use in cement spacer.

8 February Depth: 2010m Wireline logging. Made up 9 5/8" casing hanger.

9 February

Depth: 2010m Wireline logging. Wiper trip. Run 13 3/8" casing.

Made up cement spacer. Backloaded 300 Bbls mud.

10 February Depth: 1968m (top of cement)

Ran 9 5/8" Csg. String and land same at 1999m. Circulated and cleaned hole. Pumped spacer and cemented string. Ran Gyro survey. Made up test plug. Ran in hole and tested B.O.P's backloaded 600 Bbls oil base mud.

11 February Depth: 1968m

Concluded B.O.P. test. Ran and set wear bushing RIH with new BHA. Pumped 43 Bbls. Dowell spacer and displaced hole to seawater. Circulated hole clean flushed all surface lines with seawater. POOH laying out 5" drill pipe. Picked up 3 1/2" drill pipe and RIH. Cleaning pits for brine water.

12 February

Depth: 1968m

Continue to RIH with 3 1/2" drill pipe. Circulated. Pumping Dowell spacers to clean hole. POOH to 350m RIH. Continued to clean out pits and flow lines prior to brine displacement.

13 February

Depth: 1968m

RIH to 1968m. Circulated and cleaned hole. Displaced lines and well to brine. Circulated through. Dowell filtering system. POOH. Schlumberger made runs with CBL. Gauge ring and junk basket then set packer. Rig down Schlumberger.

14 February

Depth: 1968m

Function test E-Z tree and RIH with 4 1/2" tubing. Made up perforating and backflush assembly. Joint of 3 1/2" tubing damaged so made up new assembly and tested -OK. Picked up 5" tubing and RIH with perforating and backflush assembly.

15 February

Depth: 1968m

Ran remaining 6" tbg. and hung off in well head using 5" D.P. Schlumberger ran GR. + CCL. - POOH with drill pipe and hanger tool. Space out 5" tbg. Flo-petrol RIH with test plug-press. Test - OK. Made up E-Z tree and RIH on 4 1/2" TBG. Landed fluted hanger in wellhead Schlumberger. Re-run GR + CCL - POOH. Made up flow head and lines. Circulate using Halliburton. Rig up wireline to test 3 1/2" TBG. No test due to leak in flo-petrol swivel. Wait for new flo-petrol swivel.

16 February Depth: 1968m

Waiting on flo-petrol equipment. W.O.W.

2 March 1984 WOW. Attempted to RIH with wireline. Too much heave so WOW. Rigged up again to run gauges. Open PCT valve and pressure test lubricator. O.K. Open master valve and RIH with gauges making gradient stops. POOH with wireline. Rig down and commence flowing well.

3 March Flowing well.

4 March Flowing well.

5 March Continued to flow well. Shut well in then rigged up wireline. RIH with wireline to retrieve gauges making gradient stops when POOH. Made up new samplers and RIH. Energised samplers: Commenced flowing well.

6 March Flowed well then retrieved samplers and SPD on wireline. Ran two bottom hole samplers and SPD on wireline. Flowed well then recovered samplers and SPD. WOW. Flushed surface lines. Dowell pumped 72 Bbls acid and let it soak. Flowed well through choke to clean up.

7 March Flowed and continued to clean up well. Rig up wireline and RIH with gauges making gradient stops.POOH with wireline and flow well.

8 March Continued to flow well. Shut in well on PCT for pressure build up. RIH and retrieve gauges then run sand bailer for sample. Dowell pumped viscous CaCO₃ pill and bullheaded tubing. Observed well. No flow. Closed PCT. Valve and opened morv. Reverse circulated well using brine. Made up and ran shifting tool to open SSD. Shear pin broke so POOH. Re-dress and rerun shifting tool.

COST BY INTERVAL

MATERIAL CONSUMPTION

Interval RKB - 468m

36" Hole - 30" Casing

Mud Type: Spud Mud

PRODUCT	UNIT SIZE	UNIT COST	COST
Magcobar	150 sxs (50 kg)	\$ 7.10	\$ 1065.00
Magcogel	52 M/T	\$ 405.56	\$ 21089.12
Caustic Soda	22 sxs (25 kg)	\$ 22.05	\$ 485.10
Soda Ash	9 sxs (50 kg)	\$ 22.81	\$ 205.29
Lime	28 sxs (40 kg)	\$ 10.30	\$ 288.40
CMC - EHV	22 sxs (25 kg)	\$ 80.20	\$ 1764.40
*CaCl ₂	31 sxs (50 kg)	\$ 38.07	\$ 1180.17
*Mica (C)	l sx (25 kg)	\$ 21.40	\$ 21.40
			\$ 26098.88

 CaCl_2 and Mica were used by Haliburton for cement operations.

Bbls mud utilized:	2866
Meters drilled:	110
Cost per meter:	\$ 237.26
Cost per bbl:	\$ 9.11

(DRESSER)

-

DRESSER NORWAY A.S.

Shell, 31/2-13

MATERIAL CONSUMPTION

Interval 468m - 825m

26" Hole - 20" Casing

Mud Type: Spud Mud

PRODUCT	UNIT SIZE	UNIT COST	COST
Magcobar	122 M/T	\$ 148.90	\$ 18165.80
Magcogel	35 M/T	\$ 405.56	\$ 14194.60
Caustic Soda	20 sxs (25 kg)	\$ 22.05	\$ 441.00
Soda Ash	10 sxs (50 kg)	\$ 22.81	\$ 228.10
Lime	21 sxs (40 kg)	\$ 10.30	\$ 216.30
			\$ 33245.80

Bbls mud utilized:	2309 Bbls
Meters drilled:	357m
Cost per meter:	\$ 93.12
Cost per Bbl:	\$ 14.40

(DRESSER)

DRESSER NORWAY A.S.

Shell, 31/2-13

MATERIAL CONSUMPTION

- --

<u> Interval 825m - 1710m</u>

17 1/2" Hole - 13 3/8" Csg

Mud Type: Fazekleen

_--- --

PRODUCT	UNIT SIZE	UNITS	UNIT COST	COST
Magcobar	M/T	375	\$ 148.90	\$ 55837.50
Base oil (D-70)	Bbls	2745	\$ 68.47	\$ 187950.15
Bentone 38	25 kg/sx	230	\$ 160.00	\$ 36800.00
Vertoil	25 kg/sx	321	\$ 61.50	\$ 19741.50
DFL	55 gal/Dr	67	\$ 1250.00	\$ 83750.00
VG-69	25 kg/sx	467	\$ 132.80	\$ 62017.60
DV-33	55 gal/Dr	18	\$ 1044.00	\$ 18792.00
DV-22	25 kg/sx	321	\$ 44.64	\$ 14329.44
Lime	40 kg/sx	305	\$ 10.30	\$ 3141.50
CaCl ₂	50 kg/sx	335	\$.38.07	<u>\$ 12753.45</u>
-				\$ 495113.14

Bbls mud utilized:	3563
Less Bbls carried forward:	2511
	= 1052 Bbls
Average cost/bbl	=\$ 138.08
Meters drilled	= 885
Cost per meter	= <u>138.08 x 1052</u> 885
	=\$ 164.14

GRESSER DRESSER NORWAY A.S.

MATERIAL CONSUMPTION

Interval 1710m - 2010m

<u>12 1/4" Hole - 9 5/8" Csg</u>

Mud Type: Fazekleen

----- -

PRODUCT	UNIT SIZE	UNITS	UNIT COST	COST
Magcobar	M/T	17	\$ 148.90	\$ 2531.30
Base oil (D-70)) Bbls	603	\$ 68.47	\$ 41287.41
Bentone-38	25 kg/sx	118	\$ 160.00	\$ 18880.00
DFL	55 gl/Dr	15	\$ 1250.00	\$ 18750.00
VG-69	25 kg/sx	56	\$ 132.80	\$ 7436.80
Vertoil	25 kg/sx	58	\$ 61.50	\$ 3567.00
DV-22	25 kg/sx	54	\$ 44.64	\$ 2410.56
DV-33	55 gl/Dr	2	\$ 1044.00	\$ 2088.00
Lime	40 kg/sx	67	\$ 10.30	\$ 690.10
CaCl ₂	50 kg/sx	96	\$ 38.07	\$ 3654.72
				\$ 101295.89

	3165
d to h	ooat <u>2688</u>
	477 Bbls
= \$	\$ 32.01
=	300m
=	32.01 x 477
	300
=	\$ 50.90
	= :

20

(DRESSER

DRESSER NORWAY A.S.

Shell, 31/2-13

MATERIAL CONSUMPTION

Interval: Testing and completion

9 5/8" Csg, Top of cement 1968m

Mud Type: Brine

PRODUCT	UNIT SIZE	UNITS	UNIT COST	COST
HEC	25 kg/sx	12	\$ 107.00	\$ 1284.00
CaCO ₃	25 kg/sx	218	\$ 5.60	\$ 1220.80
Caustic	25 kg/sx	2	\$ 22:05	\$ 44.10
			TOTAL	\$ 2548.90

(DRESSER)

DRESSER NORWAY A.S.

Shell, 31/2-13

Interval: Testing and Abandonment

PRODUCT	UNIT SIZE	UNITS	UNIT COST \$	TOTAL COST\$
HEC	25 kg/sx	6	\$ 127.00	\$ 762.00
CaCO3	50 kg/ sx	27	\$ 5.60	\$ 151.20
CaCl ₂	50 kg/sx	24	\$ 38.07	\$ 913.68
			Total	\$ 1826.88

÷

÷

;

(SRESSER

Shell, 31/2-13

Ċ

TOTAL COST AND PRODUCT & OF TOTAL COST

(DRESSER

Shell, 31/2-13

TOTAL MATERIAL CONSUMPTION + PRODUCT & OF TOTAL COST

PRODUCT	UNIT SIZE	UNITS	UNIT COST	COST	* OF TOTAL COST
Magcobar	50 kg/sx	150	\$ 7.10	\$ 1065.00	0.1624
Magcobar	M/T	514	\$ 148.90	\$ 76534.60	11.6712
Magcogel	M/T	87	\$ 405.56	\$ 35283.72	5.3806
Base oil (D-70	0) Bbls	3348	\$ 68.47	\$229237.56	34.9579
Bentone-38	25 kg/sx	348	\$ 160.00	\$ 55680.00	8.4909
DFL	55 kg/sx	82	\$1250.00	\$102500.00	15.6309
Vertoil	25 kg/sx	379	\$ 61.50	\$ 23308.50	3.5545
VG-69	25 kg/sx	523	\$ 132.80	\$ 69454.40	10.5915
DV-22	25 kg/sx	375	\$ 44.64	\$ 16740.00	2.5528
DV-33	55 gl/Dr	20	\$1044.00	\$ 20880.00	3.1841
Lime	40 kg/sx	421	\$ 10.30	\$ 4336.30	0.6613
Caustic Soda	25 kg/sx	42	\$ 22.05	\$ 926.10	0.1412
Soda Ash	50 kg/sx	19	\$ 22.81	\$ 433.39	0.0661
CaCl ₂	50 kg/sx	469	\$ 38.07	\$ 17588.34	2.6822
CMC - EHV	25 kg/sx	22	\$ 80.20	\$ 1764.40	0.2691
Mica	25 kg/sx	1	\$ 21.40	\$ 21.40	0.0033
			TOTAL	\$655753.71	100%

(DRESSER)

Shell, 31/2-13

DAILY MATERIAL CONSUMPTION

												<u>.</u>			Log					. put									
PAGE 1	REMARKS	Ballast.Anchors.Build 33 ppb CMC	Run TGB. 795 Bbls gel slurry.	м.О.М.	36" hole to 419m.	W.O.W.	W.O.W. Parted BHA.	Recover BHA. Drlg.	Drlg.Survey.W.O.W.	Set 30" Csg.	Drlg. cement. Run riser.	3/4" pilot hol	or dev. drlg	Drlg dev. hole 12 1/4".	Drlg. dev.hole. 14 Rotary drlg.	criser	le to	-	Run & Cement csg.	Prepare to change to Fazekleen n									
	DAILY MUD COST	10.7071	9354.12	1	113.30	1304.19	41.20	2190.31	8867.08	2521.67		_			3953.24	2808.37	8528.50	4385.64	3275.80										
																												_	
																					 							-+	
																					_							-+	+
																						_							
	HZA AGOS		~			-			m	-		7		m		1		4					•						
	WICA (C)																										_		
	ена СWC	21																											-
	BENTONIT	-	20			m 		. ,	BI I	9		9		6	4	9		10										-	
	CAUSTIC	+	29	-	1	2 2	4		89	2		7 2	2	9	3	1 2	4	6 8						-		•			
	LIME	-				 				 		2	-	 	6	2	1		22						-			-	+
-13	RAGCOBAR M.T.M	-										6		-			2												
31/2-13	50 kg sx мАссогив		150																										
Shell,	рертн				419	419	419	428	468	468	473	500	583	750	825	825	825	825	825										
MELL	DATE	30.12	31.12	10.10	02.01	03.01	10.40	05.01	D6.01	10.70	10.80	10.90	10.01	10.11	12.01	13.01	14.01	15.01	16.01										

(arterio)

DAILY MATERIALS CONSUMPTION

• 60

DAILY MATERIALS CONSUMPTION

LETERO)

ļ

WELL Shell, 31/2-13

PAGE 2

						_							t BOP's		•														
REMARKS	Mixing Fazekleen OBM.	Mixing Fazekleen OBM.	Displaced TD OBM.	Drilled ahead.	WOW.	Displaced riser to mud.	Drilled ahead.	Drilled ahead.	Made 300 Bbls mud.	Drilled to TD.	Log.Wiper trip. Rig csg.	Ran cmt 13 3/8" csg.	Built pre-mix to reduce M.W. Tes	M/up new BHA.	Leak off to 1.60s.g.Drill.Survey	Core no.1 Jammed. Core no. 2.	Core no.3.	Core no.4,5,6.		Drlg. WOW. Unlatch.		prill to 2010. TD.	• 1	logging.	Wireline log.Wiper trip. Csg.	Dil base inventory adjustment.			
DAILY MUD COST	99328.88		114702.63	4812.60	3906.60	26984.90	28446.71	5512.95	44383.80	36895.50	00.0	2754.05		_	1246.40	0.00	4383.40	1043.95	0.00	2101.20	531.20	5893.40	-582.84	00.00	257.80				
DIL		1300	1620						250	150		25	575										28						-4
HZER WATER																													
38 BENTONITI	190			20				10	2	, I			94							2						-22			
CaCl2	122	26	59				62	15	26	25			61		20			15											
LIME	16	25	57	12	12	17	29	15	õ	17					50			17											
DA-32	146	30	60			20	25		20	20			60													-6cr		1	
22 dal\'dı DV-33	5	1	m		1	Г	1	Ч	m	7			2										redit						
22 dat/qı DEr	25	5	12		ч	S	5	1	7	9			12							- T			-2 (c						
69-DA	70	65	132			48	52		50	50							33			4	4					+15			
VERTOIL	146	30	60			20	25		20	20			63													-5cr			
AABODDAM .T.M	14	121		10	10	74	60	9	25	48		7						2				9			2				
DEPTH	825	25	25	176	34	34	00	10	584	10	10	10	10		44	64	84	13	44	46	46	10	10	10	10	10			_
				-					1		17	1 1710			1 1744	1 1764		ł						02 2010			$\left \right $		_
DATE	17.01	18.0	10.01	20.01	21.0]	22.01	23.01			26.01	27.01	28.01			30.01	31.6	01.02	02.02	03.02	04.02	03.1	06.02	07.1	08.0	0.60	10.0			

DAILY MATERIALS CONSUMPTION

|

PAGE 3		pisplaced OBM-Seawater.		Displacéd to brine.	Run 5" TBG.	Run 4}" TBG. Rig for flo-petrol																						
	DAILY MUD COST	0.00	0.00	0.00	2766.85	22.05																			_			
																					_					_		
																 		 	_			_				_		
		•																					-+					
																					_							
				_		 																						
· _ +			-																					_				-
	CaCO ₃ CAUSTIC				10 1	1						-		-				 								_	_	-
	<u>8-2</u> 5903				104 1		_	 		-														_				-
	N-T2 CTCO ³				104 1				-	-	-																	
	и-40 нес.				12 1					-		-		 														
										-		╞	╞	-	-	 				 								
13	AAGCOBAR	+								-			-		_	 											_	_
31/2-13	DEPTH	1968	1968	1968	1968	1968																						
MELL	DATE	11.02	12.02	13.02	14.02	15.02	16.02																					

(DRESSER

Shell, 31/2-13

DAILY MUD PROPERTIES

DAILY MUD PROPERTIES

| :

| |

I

|

ţ

!

OPERATOR: A/S NORSKE SHELL

WELL: 31/2-13

ЗЕ:		REMARKS	WOW RUNANCHON	WOW.	WOM.	WOW.Spud.	Drill. WOW.	WOW.Fish.	Fish.Drlg.	Drlg.36"TD.	Set cement	36" csg.	Set riser.	Drlg.	Drlg dev hol	=	Rotary drlg.	Displace to	S/W.Spot	viscous mud.	Opening 26"	Opening hold												
PAGE:_		OIL/WATER RATIO		/	/			/		/		/	/	/	/			/		/		/			/	/	///////////////////////////////////////	/		/		/	, , ,	
		sorios %																																
	RETORT	% WATER																																
		% OIL																																
	ACTIVITY	As SHALE																																
	ACT	Am MUD										_																						
		SALT % BY WT.	LAYS																															
		ר cr	FIVE d	=																														i
		ΡF	ADD NA																															
	LOSS LOSS	Temp PSI	MUD	=																														
		STAB. VOLTS	GUJS																															
	GELS	10													22	38								_			_							
CES		0												2	4 17	0 25	24 19													$\left - \right $		$\left - \right $		
SERVICES	CORR. 115°F	م				$\left \right $					-			5 15	5 24	8 40				-				_					-	$\left - \right $	$\left - \right $	\vdash		
		≥														-	_								 					-		\vdash		4
DOLPHIN	VISCOSITY	SEC, CPS.	50	100	100	100	100	100	100	100	100		84	42	43	47	42	0			0	0			 					$\left - \right $		$\left - \right $,	
	5	<u> </u>			.08 1	1 1							L				L	0 100		-	0 100	10 100	OBM.						-	\vdash	$\left \right $	\vdash	$\left \right $	
TOR	<u> </u>	¥.	1.03	1.08	-	1.05	1.05	1.	1.05	1.05	1		1.05	1.06	1.09	1.11	1.12	1.10			1.10		DN I											
CONTRACTOR:		DEPTH				397	419	419	428	468	468		473	500	583	750	825					B 25												
00		DATE	30.12	31.12	01.01	02.01	03.01	04.01	05.01	06.01	07.01		08.01	10.90	10.01	10.11	12.01	13.01			14.01	15.01	16.01											
	1	RO93R No.		7	m	4	S	و	F	8	6		10	11	12	13	14	15			16	17	18											

		194		A							ò	אחואכ	≻	D N N	Q	Ц Ц	а О	PROPERTIES	S I I			
	IdO	OPERATOR:		N/S	A/S NORSKE	SKE S	SHELL			1									31/2-13	-13		
	CO	CONTRACTOR:	TOR:	NIHATOO	NIH	SER	SERVICES	10		ļ											PAGE:	2
				VISCOSITY	SITY	CORR. 115°F	аR.	GELS			FLUID				ACTIVITY	יודא	-	яетоят				TOTAL.
ЯСЧЭЛ Ио.	DATE	DEPTH	SG .	SEC.	CPS.	Ş	٩	-	10 VOLTS		Temp 300 PSI 500	Цd	и ^в /г сг	SALT % BY WT.	Am MUD	As SHALE	oir %	% WATER	sorids %	0IL/V	OIL/WATER RATIO	MUD COST
19	17.01	825	1.30	50	T	14	11	69	9 2000+		4.2	0.7	117200	16	.888		75	12	13	86 /	14	159633.56
20	18.01		1.30	49		1,	15					-	143000		.850	+	74	14	12	84 /	/ 16	287018.98
	10.01		1.30	22	+	12	12	2 5 7 7 7 7	1250	+	9.0		143000	155			() 03	21	T7		7 20	-1
Τ	10.12	1134	25.1	209	1	29	1	919 19 19	+	┿╾	╈	0	117500	16	.880	+	67	17	16	80	7 20	
{	22.01		1.40	11		24	15	1		$\left \right $		m		17.3	.870		67	15	18	82	/18	
	23.01	1	1.40	68		29	17	7 14	900			1.81	129900	17.5	.870		62	18	20	78 /	/ 22	465871.00
	24.01	1 1	1.40	70		28	15				\dashv	œ	121440	-1	.880	+	65	15	20	81	/ 19	
	25.01		1.40	11		32	16		+	+	\rightarrow	ω	108936	15	.890	┤	99	16	18	80	20	515768.00
28	26.01	1710	1.40	60		28		- - - - - - - - - - - - - - - - - - -	880	+	4.0		121440	15.8	088.		6/57	2	17.5	B2 B2	AT A	552663.00
T		1		12		j ac			┿	+	┿╼	i c		15.5	. 890		67	15		82	18	555417.90
Τ	29.01		1.40	75		26	19		+	╀	┢	0	113100	15.5	.890		67	15	18	82 /	/18	ר ו
32	30.01		1.25	51		20	10				3.0	<u>1</u> 6.	42885	19.0	.850		70	13	17	84 /	16	637067.64
33	31.01		1.25	57		18	6	h				1.41	31000	17.7	.860		72.5	12	15.5	86 /	14	637067.64
	01.02	1 1	1.25	56		19	11			_	0.E	•	24000	16.7	.870		72.5	12.5	15	85 /	,15	•
	02.02		1.25	67		19	12		\dashv	+	+			18.2	.860	-+	73	12	15	86 /	/ 14	•)
36	03.02	. 1	1.25	89	+	10		7	+		-+-	ω[r	132000	17.8	. 866		72	13	15	85	115	642493.99 647505 10
		1046	1.25	90		22 6	12		0T0	+	+		040201	E 71	000	+-	202	15	15	68	/18	• •
	06.02		1.25	62		33	12	+-	┼─		3.2		106000	14.	106.		71	13.5	15.5	84 /	/16	651019.79
	07.02		1.25	95		23	12					1.3	106000	14.8	106.		71	•	15.5	84 /	/16	650436.95
	08.02		*	102		23	13	5 11						14.8	106.		11	• 1		84 /	/16	•
	09.02		_	100		25	14		1 660		-			14.8	.901		17	13.5	•	84 /	, 16	•
	10.02	1948	1.25	87		24	El	6 12	-+		-+	1.4	106000	14.8	.901	-+	71	13.5	15.5	84	/16	656713.71
				T	T	T	+	+		+	+	1										
						Ţ	╧	+-		┼	+-					+						
					1		1			+-												
								$\left \right $		$\left \right $												
			Ţ	1	1	1	-	+	_	+		╈	T	T								
Ţ			T		T	1	\dagger	╀		╀	\uparrow	1		T		+						
					1	1	1					1										

K

i

I

(CRESSER) DRESSER NORWAY A.S.

Shell, 31/2-13

DAILY MUD VOLUMES

	I Mal	Malle Works Frank		title													COMP: SHELL	inalis	•		ບ	CONTR:."	
ם 		SSED SSED	Ľ			ਚ ∢	ហ				с. С С Г О. Ш		1		• 1	(-	WELL: 3.1/2-13	3,1/2-	13	•		RIG	RIG: BORGNY. DOLPHIN
) J								┟╴	F			ម្ម	BUILT		 		Í	VOLUME	LOST				
·›VLE	SISE HOLE	DEPTH	.TW QUM	AISC.	DBLD. HOLE BBL'S	AOTOWE HOLE	ACTIVE PIT VOI	RES. VOL.	VOL.	TUN	AETAW	1	DAILY	. MMUD	סמשם	ध्य अस ्म S	ם באוום.	סבונד	HOLE	.OSIM	YJIAQ	.mmuə	REMARKS
10,21	174	806	~	42	0	0	0	1283 1:	1283 76	7639 6	68 110	00	0 12	1283 1283	3						0	0	Built O.B.M.
1/81	1	806 1	• •	49	0	0	1					200	154 4	402 1685	15								Built & wf. UP.M.
19/1	174		•	57	+	<u> </u>	411		2307 3:	3315 4	40 6	600	9	688 2373	13 46					20	66	66	Displace 0.B.M.
20/1	17}	971 L	.32	60	93 10	1003	357	878 2	2238	3 - 7	20		2	30 2403	33	24				75	66	165	Drilled ahead.
21/1	174	1134 1.	.33	60	134	780	480	925 2	2185	12			14	17 2420	0	53				22	53	218	
22/1	17}	1134 1.	40	12	177 1	1180	400	758 2	2338 4	4 2	- 2	200	59 2	269 2689	66	60				90	116	334	
23/1	174	1300 1	1.40	68	155 1	1335	380	855 2	2570	7 6	7	220	66 2	299 2988	E B	67					67	401	
24/1	174	1-	40	70	86 1	1421	396	705 2	2522	4 2			10	16 3004)4	4	· 			24	64	465	Drilled ahead.
25,1	174	1584 1.	40	11	142 1	1563	400	505 2	2468 1	1510 -		250	40 3	315 3319	6]	37			100	94	231	969	See daily log.
26/1	17}	1710 1.	40	60	123 1	1726	396	491 2	2613 1:	1210 -		150	72 2	244 3563	53				66		66	795	Drilled ahead.
27/1	174	┶		64		1726	396	434 2	2556 -				 	3563	53				138	57	195	990	Log.Wiper trip.
28/1	17}	1710 1	41	76		1109	420	982 2	2511	+				3563	53	10			52		62]	1052	Security 200
			+			†				 .		 											
			+								}												
			+		+		+				 												
			+	+		1						 											
			+-	+	+	+ 					}						{						
			+	+		+			! 														
			┟╌						 														
			+		+				 														
			+	+		1-																	
			+		+	1	 			 													
			┼─	+	+																		
			 			1	†	-															
										$\left - \right $	$\left - \right $	$\left - \right $	$\left - \right $										
!														_	_								
-								•				•											rege and also and state a <u>many to state to state the state</u>

:				7733	C.F.		<u>,</u>			Š O		ME	-UME DATA -	TA•		;			- • •	•	2		
ā	DHES	SER 1	VORWAY	NVA NVA	ЧA.	ហ៊		({	Ā	WELL! 314 2-13.	1-271	~	÷			WEUTTOF TAPADE :DIN
										ž	VOLUME	BUILT					VO.	VOLUME	LOST				
E	SIZE	MUD WT	. DSIV	S'180 BBL'S	VOLUME HOLE DRLD.	ACTIVE	VOL. RES.	JATOT .JOV	MUD	AETAW	011	FIDHA 8	YJIAG	• MMUD	םמאם	RENER	GUAR. D	TIILA	HOLE	. D2IM	YJIAG	. MMUD	REMARKS
29/1		10	I ~	2	110	420	ف	2144	40		575		615	4178						982	5	2034	982Bbls_beckload
30/1	12 1/4	1744 1.	25 51	l 16	1095	452	567	2114	6				•	4187	<u>_</u> 0				30		39 2	2073	
31/1	12 1/4	1754 1.	25 57	L . 1	1102	370	632	2104					-	4187		10					10 2	2083	
1/2	12 1/4	17841.	25 56	14	1116	430	544	2090	m					4190		17			-+		17 2	2100	•
2/2	12 1/4	18131.	25 67	1 14	1130	413	530	2073	ē			с	-	4199	7	20 6					26 2	2126 ^F	Ran cmt 30 gpm.
3,2	12 1/4	1844 1.	25 70	15	1178	362	529	2069						4199		4		-+			4 2	2130	
4,2	12 1/4	19461.	25 66	5 49	719	975	349	2043		10				4209	25 6	- 07					30 2	2166	Sw. Dumped space
5/2	12 1/4	1946 1.2	25 73	-	719	975	352	2046		e				4212							8	2166	Make spacer wuw.
6/2	12 1/4	20101.	25 68	31	1257	289	453	1999	ъ					4217	34 1	14 4					52 2	2218	
7/2	12 1/4	20101.	25 95	10	1257	393	349	1999					-	4217							5	2218	απόδοι απιταιτ
8/2	12 1/4	20101.	25 102		1257	393	349	1999					-	4217							7	2218 W	Wireline logging
9/2	12 1/4	20101.	25 100		1257	391		1648						4217						351	351 2	2569	ration
10/2	9 5/8 250	19681.	25 87		855	42	39	934						4217	44				0 ⁷	600	114 2	2683 /	/JBD1 Benind. Casing.
11/2	csg	1968		 				IIN							179					755	~	2862 0	out pits.
12/2		SEAW	SEAWATER J	IN HOLE	 <u>m</u>														-		-†		
																				-+	-+	Ť	
						 															-+		
					 															-†	-+	Ť	
			·																-+	-+		\uparrow	
					 																-+	1	
															-								
																					-+		
					-																		
			-	<u> </u>	-		<u> </u>																
				<u> </u> .															-†		-+		
																						-	
															1							•	

ļ

DRESSER) DRESSER NORWAY A.S.

ŝ

Shell, 31/2-13

VOLUMES SUMMARY O.B.M.

17 1/2" Hole - 13 3/8" Csg

825-1710m

VOLUME BUILT

BASE OIL	-	2720 Bbls
CHEMICAL ADDITIONS (EXC	. BARITE)	268 Bbls
WATER ADDITIONS		153 Bbls
BARITE ADDITIONS	•	422 Bbls
	TOTAL=	3563 Bbls

LOSSES

DISCARDED		46 Bbls
SOLIDS EQUIPMENT		291 Bbls
SUB SURFACE		389 Bbls
MISCELLANEOUS		239 Bbls
	TOTAL=	1052 Bbls

2511 Bbls CARRIED TO 12 1/4" HOLE SECTION

(GRESSER)

DRESSER NORWAY A.S. MAGCOBAR

Shell, 31/2-13

12 1/4" HOLE - 9 5/8" CSG

1710-2010m

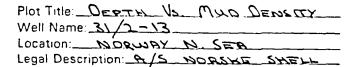
VOLUME BUILT

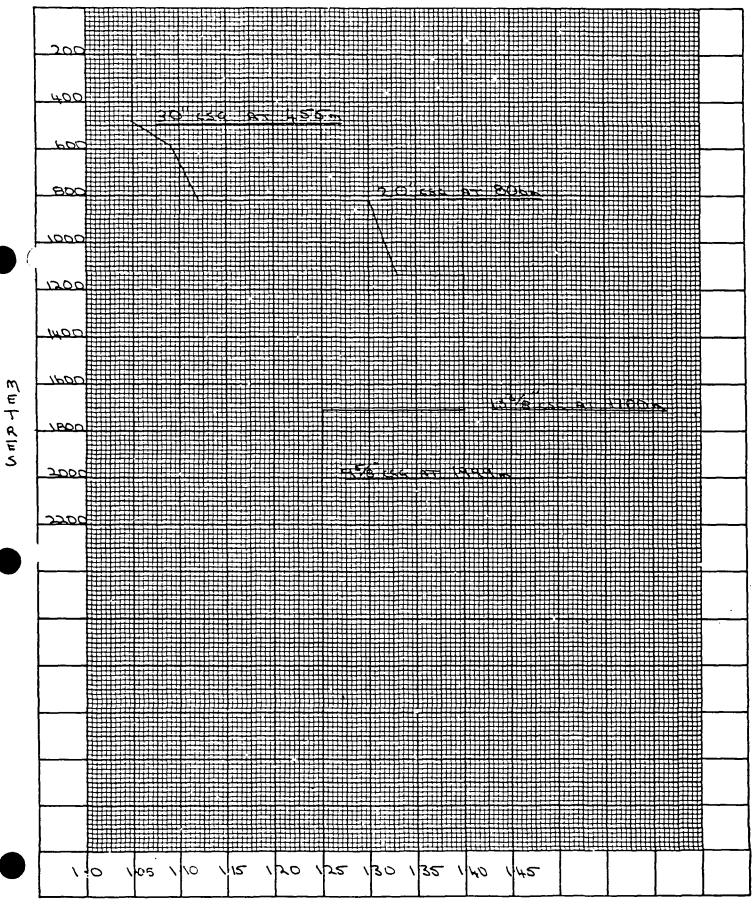
BASE OILS	575 Bbls
CHEMICAL ADDITIONS (EXC. BARITE)	63 Bbls
WATER ADDITIONS	13 Bbls
BARITE ADDITIONS	<u> </u>
TOTAL=	654 Bbls

LOSSES

(

DISCARDED		282 Bbls
SOLIDS EQUIPMENT		95 Bbls
SUB-SURFACE		100[Bbls
MISCELLANEOUS		NIL
	TOTAL=	477 Bbls


2688 Bbls OFF LOADED TO BOATS


(DRESSER)

Shell, 31/2-13

GRAPHS

MUD DENSITY

(DRESSER)

Shell, 31/2-13

BIT RECORD

BIT AND HYDRAULIC RECORD

VERY VERY ERY 44RECOVERY ERY ERY **90%RECOVERY &RECOVERY** Direction 48RECO 32%RECO USED W BOLE OPENEI CEMEN 20%RECO 00%RECO 00%RECO 1 N53W 1/412¹4NAOW NAIW SUMMARY outr VER. DEV. 59 þ_ 25 40 31 40 45 1/8 44 47 42 HOURS DAYS DRILLED 1/8 BITS Dull. Cond. 1 1 0 0 0 0 υ н н WORN WORN WOHN WORN WORN WOHN WORN FAZEKLEEN MUD TYPE/S SPUD æ ى đ 40% 25% 15% 10% 25% 40% စ ക് ഹ 4 4 4 PUMP No. 1 PUMP No. 2 100 Liner SPM 69 80 80 06 85 8 99 ı 20 75 60 75 <u></u>б2 75 <u>6</u>2 90 95 64 70 64 6 75 64 100 6 80 65 64 64 6 ÷ 60 69 80 64 6 **4**9 75 64 82 64 50 64 60 64 100 6 60 6 6 58 64 58 63 6 58 64 6 TOOL 9 6 85 80 65 82 58 75 60 66 66 66 Liner SPM 6 6 6 6 6 6 9 9 3.85-1550/80400/10006 é 1850 3200 3400 3400 3400 3600 1800 1600 3300 750 750 3200 1000 2200 1200 1100 750 750 1050 1500 1400 2500 800 300 650 3200 DRILL PIPE PUMP 230 6020 104510025 45510025 45511025 45511025 55510025 55510025 3060 1101 9.40-5 30/40 65 001.00 8 2 120 60 65 120 130 RPM <u>6</u>2 45110 ÷55ª6d WT 1000 LBS. 4.20-20 <u>6-10</u> 020 20 45 20 13.9 10 8.75 35 Ę 10 17 16.6 PER L0.2 1.6 4.8 <u>-</u> 4.2 . 0 و 2 2 25 52 20 52 13 ŝ 4 9 ഹ DRILL COLLARS 0.D. x 1.D. x LENGTH HOURS 2.5 12 6 54 56 44 T. 4 5 2 ഗ S 4 42 ω [~ m m **|**∼| 2 2 5 12.5 18.5 DRILLED 319 130 210 142 96 34 10 18 102 61 19 75 12 12 64 57 S 27 83 167 24 9 31 H 91 × E 1825.5 DEPTH OUT 468 750 825 1295 419 473 500 583 782 710 1744 1754 1784 1946 813 813 943 1153 1391 772 795 1844 2010 447 1813 1807 No. 1 EMSCO FA-1600 No. 2 EMSCO FA-1600 18 18 18 18 20 20 18 18 20 20 20 16 16 20 18 18 18 20 20 20 16 20 20 20 20 2 3 COREHEAD JETS - 32nds Reg. R or RO COREHEAD COREHEAD COREHEAD COREHEAD COREHEAD COREHEAD EHEAD PUMP MAKE 20 20 20 18 20 16 16 20 16 S 20 16 20 18 18 18 10 20 18 ß 20 20 20 20 20 20 9 ocs/3AJ ACC WEASEL3 **NEASEL3 NEASEL3 VEASEL3** VEASEL3 VEASEL3 VEASEL3 VEASEL3 DSC 3AJ SCIG SCIG SCIG DSC1G DSCIG osc1G SEA TYPE XIG XIG DSJ S4J S4J S4J DOLPHIN SERVICES DSJ S4J S4J A/S NORSKE SHELL osc X1G HTIMS HTIMS TROLL NOR. NORTH HTC HIC MAKE SEC HTC HTC HTC HTC ACC HTC SEC SEC SEC SEC HTC HTC HTC ACC ACC ACC ACC ACC LI CHE ACC U H H 14 3/4 15 14 3/4 31/2-13 2 1/4 4 3/4 26+36" 4 3/4 4 3/4 2 1/4 2 1/4 BRR 12 1/4 $\frac{21/4}{4}$ 2 1/42 1/46+36" 4 3/4 2 1/4 2 1/4 2 1/4 2 1/4 26+36" 4 3/4 SIZE 1 174 F 6RR 173 -6RR 1173 BRR 1 8RR **3RR** 6RR **3RR 3RR** 5RR <u>9RR</u> 2RR **JRR** <u>9RR</u> **9**RR JRR N⁰N. ە 4 S æ σ þ CONTRACTOR WELL NAME OCATION **OPERATOR** REMARKS 24/1 23/1 31/11/6120/1 2271 12/1127 1671 25/I <u>29/1</u> 31/1 DATE 10/1 6 2 372 372 372 4/2 6/2 2/2 2/1 6/1 8/1 Ľ 2

(BRESSER)

Shell, 31/2-13

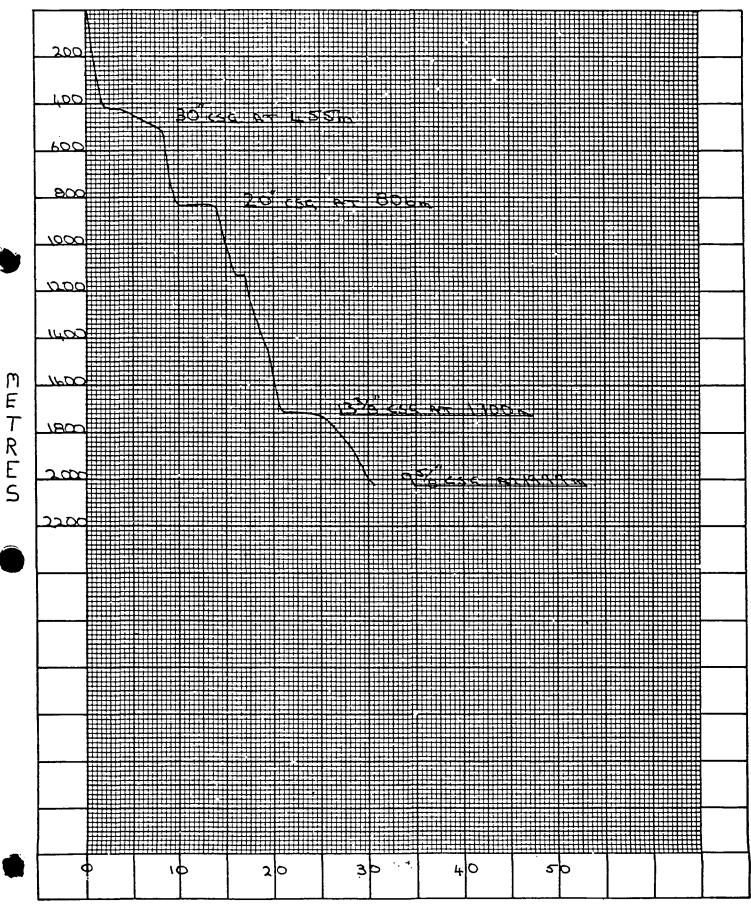
CUTTINGS ANALYSIS

OIL CONTENT ON CUTTINGS (1/m ³)	325	238.50		193	212	195	277				369	312 1/m ³	352 1/m ³	
REMARKS (such as cuttings size, LCM No. of samples)											SOME CEMENT		CORTING	
SPECIFIC GRAVITY OF SAMPLE	2.3	2.3		2.3	2.3	2.3	2.3				2.3	2.3	2.3	
VOL OF WATER RETORTED (ML)	15	16		16	15	16.5	14				11.5	σ	8.5	
VOL OF OIL RETORTED (ML)	13	12.5		11	11	10	15				22	16.50	19.50	
WEIGHT OF DRY SAMPLE (Grams)	28	55	Ŋ	69	60	57	58	ŭ	ŋ	ŋ	60	63	63	
WEIGHT OF WET SAMPLE (Grams)	62	80	NO DRILLING	63	84	81	87	NO DRILLING	NO DRILLING	NO DRILLING	86	88	88	
DATE	20.12.83	21.01.84	22.01.84	22.01.84	23.01.84	24.01.84	25.01.84	26.01.84	27.01.84	28.01.84	29.01.84	30.01.84	31,01.84	
										-				-

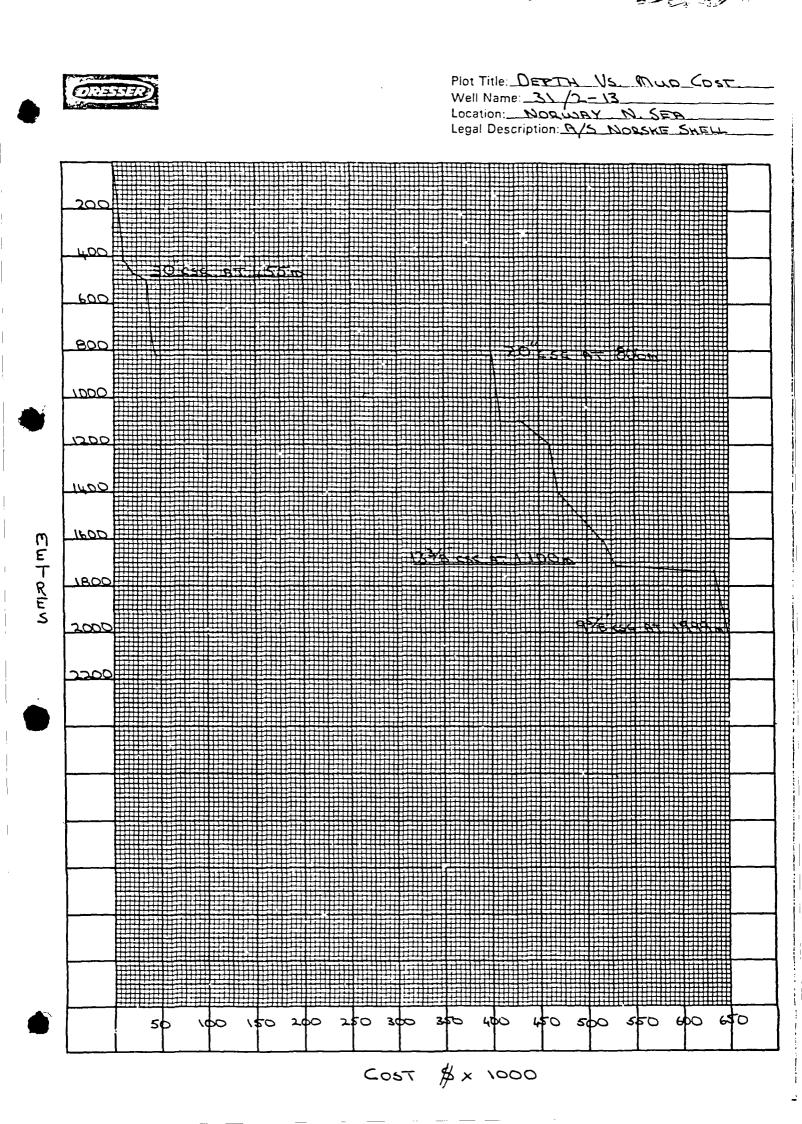
RETO. - RESULTS FROM CUTTINGS DISCHARGED

•

OIL CONTENT ON CUTTINGS (1/m ³)	341 1/m ³	342 1/ ^{m³}	367 1/m ³	263 1/m ³	315 1/m ³	
REMARKS (such as cuttings size, LCM No. of samples)	CORING		Ŧ	DRLG	Ŧ	
SPECIFIC GRAVITY OF SAMPLE	2.3	2.3	2.3	2.3	2.3	
VOL OF WATER RETORTED (ML)	7 ml.	'n	4.5	11	Ŋ	
· VOL OF OIL RETORTED (ML)	18 ml.		19.5	14.5	10.5	
WEIGHT OF DRY SAMPLE (Grams)	64 gr.	68	67	68	41	
WEIGHT OF WET SAMPLE (Grams)	96 gr.	91 gr.	89 gr.	68	50	
DATE	01.02.84	02.02.84	03.02.84	04.02.84	07.02.84	


RETOR. RESULTS FROM CUTTINGS DISCHARGED

I


•

Plot Title. DEPTH VS DAYS Well Name: 31 /2 - 13 Location: NORWBY N SER Legal Description: A/S NORSKE SHELL

DAYS

