

# Final Well Report

NO 34/9-1 S, NO 34/9-U-1 Cambozola PL1049











| Title:                                                                                    |                   |                  |                     |           | -      |      |         |  |
|-------------------------------------------------------------------------------------------|-------------------|------------------|---------------------|-----------|--------|------|---------|--|
| Final well report<br>Pilot well NO 34/9-U-1<br>and Exploration well NO 34/9-1 S Cambozola |                   |                  |                     |           |        |      |         |  |
| Document no.: 2022-013511                                                                 | Contract no.:     |                  | Project:            |           |        |      |         |  |
| 2022-013511                                                                               |                   |                  |                     |           |        |      |         |  |
| Classification:                                                                           |                   | Distribution:    |                     |           |        |      |         |  |
| Restricted                                                                                |                   | Equinor          |                     |           |        |      |         |  |
| Expiry date:                                                                              |                   | Status:<br>Final |                     |           |        |      |         |  |
|                                                                                           |                   | •                |                     |           |        |      |         |  |
| Distribution date:                                                                        | Rev. no.:         |                  | Copy n              | 10.:      |        |      |         |  |
|                                                                                           | 0                 |                  |                     |           |        |      |         |  |
| Author(s)/Source(s):  Mark Vanhatalo, Ottar Hui Elise Huseklepp Børve                     | nnes, Julie Ka    | atrine Draglan   | ıd, Banzi           | Olorunju, | Ingrid | Enge | Drange, |  |
| Subjects:<br>Final well report for pilot well NO                                          | 34/9-U-1 and expl | oration well NO  | 34/9-1 S Ca         | mbozola   |        |      |         |  |
| Remarks:                                                                                  |                   |                  |                     |           |        |      |         |  |
| Valid from:                                                                               |                   | Updated:         |                     |           |        |      |         |  |
| Responsible publisher:                                                                    |                   | Authority to ap  | approve deviations: |           |        |      |         |  |
|                                                                                           |                   | L                |                     |           |        |      |         |  |
| Responsible project leader (Organisation                                                  | on unit / Name):  |                  | Date/Signature:     |           |        |      |         |  |
| Project Leader - Tore Klungsøy                                                            | r                 |                  |                     |           |        |      |         |  |
| Responsible (Organisation unit/ Name): EPN SUB ASDW RVC                                   |                   |                  | Date/Signature      | e:        |        |      |         |  |
| Manager Subsurface – Tom Dre                                                              |                   |                  |                     |           |        |      |         |  |
| Recommended (Organisation unit/ Nam                                                       |                   | Date/Signature:  |                     |           |        |      |         |  |
| PDP DW OCN EXP  Leader D&W Operations – Stein                                             |                   |                  |                     |           |        |      |         |  |
| Approved by (Organisation unit/ Name): EPN SUB WS WPX                                     |                   | Date/Signature   | e:                  |           |        |      |         |  |
| Manager Subsurface – Linda A                                                              |                   |                  |                     |           |        |      |         |  |



Rev. no.: 0

Final well report,
Pilot well NO 34/9-U-1
and Exploration well NO 34/9-1 S Cambozola

Doc. No. 2022-013511

Valid from: Dec 2022

# **Table of contents**

| 1    | Introduction                                                     | 5  |
|------|------------------------------------------------------------------|----|
| 1.1  | Well data record                                                 | 6  |
| 1.2  | Well objectives                                                  | 8  |
| 1.3  | Result of the well                                               | 8  |
| 1.4  | Drilling summary                                                 | 9  |
| 1.5  | Data acquisition summary                                         | 11 |
| 2    | Exemptions and non-conformances                                  | 13 |
| 3    | Health, safety, environment and quality (HSE/Q)                  | 13 |
| 3.1  | RUH (Rapport Uønsket Hendelse), Safety Incident Cards            | 13 |
| 3.2  | Incidents by service and company                                 | 15 |
| 3.3  | Experience summary                                               | 19 |
| 3.4  | Time distribution                                                | 27 |
| 4    | Geology and formation data report                                | 32 |
| 4.1  | Geological setting and results                                   | 32 |
| 4.2  | Shallow gas results                                              | 34 |
| 4.3  | Stratigraphy                                                     | 34 |
| 4.4  | Lithostratigraphic description                                   | 38 |
| 4.5  | Hydrocarbon indications                                          | 40 |
| 4.6  | Geophysical results                                              | 46 |
| 4.7  | Data acquisition                                                 | 47 |
| 4.8  | Formation pressure                                               | 50 |
| 4.9  | Formation integrity                                              | 52 |
| 4.10 | Reservoir fluid sampling                                         | 52 |
| 4.11 | Formation temperature                                            | 53 |
| 4.12 | Experiences / recommendations                                    | 55 |
| 5    | Drilling operations report                                       | 56 |
| 5.1  | NO 34/9-1 S, Move to Location (09.Apr.2022 00:00)                | 56 |
| 5.2  | NO 34/9-1 S, Pre-Spud (09.Apr.2022 08:20)                        | 56 |
| 5.3  | NO 34/9-U-1 (Pilot Hole), Pre-Spud (09.Apr.2022 17:40)           | 56 |
| 5.4  | NO 34/9-U-1 (Pilot Hole), 8 ½" (09.Apr.2022 20:20)               | 56 |
| 5.5  | NO 34/9-U-1 (Pilot Hole), 8 ½" Permanent P&A (11.Apr.2022 05:15) | 57 |
| 5.6  | NO 34/9-1 S, 26" x 42" (09.Apr.2022 20:20)                       | 57 |
| 5.7  | NO 34/9-1 S, 26" (11.Apr.2022 19:20)                             | 58 |
| 5.8  | NO 34/9-1 S, 17 1/2" (18.Apr.2022 04:20)                         | 58 |
| 5.9  | NO 34/9-1 S, 12 1/4" x 13 1/2" (25.Apr.2022 08:15)               | 59 |
| 5.10 | NO 34/9-1 S, 10 5/8" x 12 1/4" (04.May.2022 15:30)               | 61 |
| 5.11 | NO 34/9-1 S, 8 1/2" HPHT (20.May.2022 16:55)                     | 62 |
| 5.12 | NO 34/9-1 S, 6" HPHT (28.May.2022 10:30)                         | 63 |
| 5.13 | NO 34/9-1 S, Permanent P&A (DP) w/ RIG (03.Jun.2022 18:30)       | 64 |



Doc. No. 2022-013511

Valid from: Dec 2022

Rev. no.: 0

| 5.14    | NO 34/9-1 S, Move from Location (19.Jun.2022 04:00) | 66  |
|---------|-----------------------------------------------------|-----|
| 6       | Appendices                                          | 67  |
| Арр А   | Operational listing                                 | 68  |
| Арр В   | Directional data. survey listing                    | 73  |
| App C   | Contractors list                                    |     |
| App D   | Wellsite sample description                         | 79  |
| Арр Е   | Shallow geohazard report                            | 107 |
| App F   | Final well locations memos                          | 111 |
| App G   | Wellbore Schematic                                  | 113 |
| Арр Н   | P&A Wellbore Schematic                              | 114 |
| App I   | Time vs. depth curve                                | 115 |
| App J   | Time planner                                        | 116 |
| Арр К   | Bit record (table)                                  | 140 |
| App L   | BHA Assemblies                                      | 146 |
| Арр М   | Drilling fluids                                     | 172 |
| App N   | Cementing data (table)                              | 173 |
| Enclosu | roc .                                               | 106 |



Doc. No. 2022-013511

Valid from: Dec 2022 Rev. no.: 0

# 1 Introduction

Exploration well NO 34/9-1 S Cambozola is drilled in the Cambozola North prospect, located in the Magne Sub-Basin in the Northern Viking Graben. The nearest discoveries are the Afrodite gas/condensate discovery about 1km from the eastern extreme of Cambozola North and the Hyperion gas/condensate discovery about 20km to the west. The nearest producing field is the Kvitebjørn Field about 20km to the south-west of the westernmost part of the prospect (Figure 1-1).

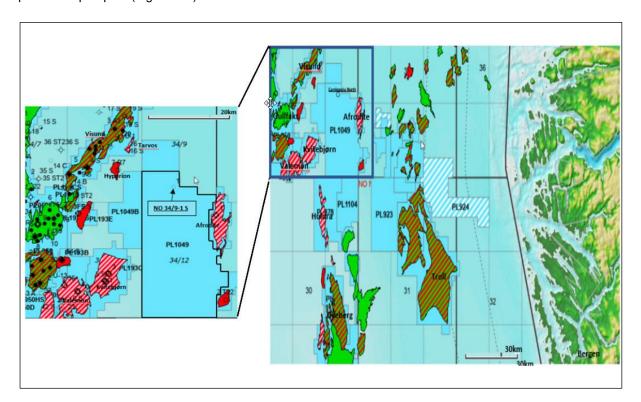



Figure 1-1 Location map

Classification: Restricted Status: Final www.equinor.com



Doc. No. 2022-013511

Valid from: Dec 2022 Rev. no.: 0

# 1.1 Well data record

Classification: Restricted

Status: Final

### Table 1-1 Well data NO 34/9-U-1

| Well name           | NO 34/9-U-1             |                            |
|---------------------|-------------------------|----------------------------|
| Type of well        | Pilot hole              |                            |
| Prospect            | Cambozola North         |                            |
| Licence             | PL1049                  |                            |
| Country             | Norway                  |                            |
| Area                | North Sea               |                            |
| Licences            | Equinor Energy AS       | 35 %                       |
|                     | Longboat Energy AS      | 25 %                       |
|                     | Sval Energi AS          | 20 %                       |
|                     | Petoro AS               | 20 %                       |
| Drilling unit       | Deepsea Stavanger       |                            |
| Туре                | Semi-submersible        |                            |
| Water depth         | 382m MSL                |                            |
| Air gap             | 30.0m                   |                            |
| On license          | 09.04.2022              |                            |
| Rig released        | 11.04.2022              |                            |
| TD of pilot hole    | Drillers Depth          | 1300m MD / 1299.6m TVD RKB |
|                     | Loggers Depth           | N/A                        |
| Formation at TD     |                         | Undiff. Hordaland          |
| Surface coordinates | Geographic coordinates: |                            |
|                     | Latitude                | 61° 16' 45.374" N          |
|                     | Longitude               | 02° 48' 44.331" E          |
|                     | Datum/EPSG code         | ED50/ Int. 1924            |
|                     | UTM coordinates:        |                            |
|                     | Northing                | 6 794 070.5 m              |
|                     | Easting                 | 489 937.6 m                |
|                     | UTM Zone/C.M.           | 31 N/03° E                 |
| Seismic reference   | CGG18M01                |                            |
|                     | Inline                  | 5765                       |
|                     | X-line                  | 29078                      |

Page 6 of 196



Doc. No. 2022-013511

Valid from: Dec 2022 Rev. no.: 0

# Table 1-2 Well data NO 34/9-1 S

| Well name           | NO 34/9-1 S Cambozola      |                              |
|---------------------|----------------------------|------------------------------|
| Type of well        | Exploration, Wildcat, HPHT |                              |
| Prospect            | Cambozola North            |                              |
| Licence             | PL1049                     |                              |
| Country             | Norway                     |                              |
| Area                | North Sea                  |                              |
| Licences            | Equinor AS                 | 35 %                         |
|                     | Longboat Energy AS         | 25 %                         |
|                     | Sval Energi AS             | 20 %                         |
|                     | Petoro AS                  | 20 %                         |
| Drilling unit       | Deepsea Stavanger          |                              |
| Туре                | Semi-submersible           |                              |
| Water depth         | 382 m MSL                  |                              |
| Air gap             | 30.0m                      |                              |
| On license          | 09.04.2022                 |                              |
| Rig released        | 19.06.2022                 |                              |
| TD of Cambozola     | Drillers Depth             | 4455m MD / 4422.7m TVD RKB   |
|                     | Loggers Depth              | 4455.7m MD / 4423.4m TVD RKB |
| Formation at TD     |                            | Sola                         |
| Surface coordinates | Geographic coordinates:    |                              |
|                     | Latitude                   | 61° 16' 45.676" N            |
|                     | Longitude                  | 02° 48' 44.443" E            |
|                     | Datum/EPSG code            | ED50/ Int. 1924              |
|                     | UTM coordinates:           |                              |
|                     | Northing                   | 6 794 079.9m                 |
|                     | Easting                    | 489 939.3m                   |
|                     | UTM Zone/C.M.              | 31 N/03° E                   |
| Seismic reference   | CGG18M01                   |                              |
|                     | Inline                     | 5765                         |
|                     | X-line                     | 29079                        |



Page 8 of 196

Final well report,
Pilot well NO 34/9-U-1
and Exploration well NO 34/9-1 S Cambozola

Doc. No. 2022-013511

Valid from: Dec 2022 Rev. no.: 0

### 1.2 Well objectives

Primary objective for the NO 34/9-U-1 pilot well was:

De-risk the well location with respect to shallow hazards (8 ½" pilot hole drilled 30m away from the main well location, drilled to the planned section TD of 26" hole section)

Primary objectives for the NO 34/9-1 S Cambozola exploration well were:

- o Prove commercial volumes in Cambozola North segment
- Prove intra Sola Formation sandstone (Aptian) as a working play
- No commercial oil volumes left up-flank in Cambozola North segment
- Acquire data to establish reservoir presence and quality, fluid properties, pressure gradient and age of reservoir
- Establish the relation between seismic amplitude and reservoir

#### 1.3 Result of the well

The pilot well NO 34/9-U-1 was spudded in a water depth of 382m MSL and was drilled as planned approximately 30m away from the main well location to the planned section TD of 26" hole section. The TD was set in the Hordaland Group at 1300m MD. The pilot well penetrated formations of Quaternary and Neogene age. The stratigraphy was as expected, and within the uncertainty range of the prognosis. No shallow gas was observed while drilling the pilot hole. A more detailed interpretation of the shallow sections can be found in the shallow hazards report in App E.

The main well NO 34/9-1 S was the first exploration well to be drilled within the area of licence PL1049. The well was designed and drilled in accordance with HPHT requirements. It was spudded in a water depth of 382m MSL and was drilled as an S-shaped well with a full casing design. In addition, an 11 ¾" liner was run as planned. To be able to reach TD, an unplanned 7" liner had to be added. TD was set in the Sola Formation at 4455m MD i.e. 117m MD shallower than planned.

The prognosed reservoir in Sola Formation is proved to not represent deep water turbidite reservoir as expected. However, top prognosed reservoir/top Sola Formation represents a transition from shales in the lower part of Rødby Formation to more silty shales and sparse traces of sandstone. The appearance of silt and traces of sandstone could be remobilisation of more proximal deposited material as mud/silt flow deposits, low density turbidites or slurry flows.



Doc. No. 2022-013511

Valid from: Dec 2022 Rev. no.: 0

# 1.4 Drilling summary

# Table 1-3 Drilling summary

| Section                               | Start time        | End time          | Rig name          |
|---------------------------------------|-------------------|-------------------|-------------------|
| NO 34/9-1 S Move to Location          | 09.Apr.2022 00:00 | 09.Apr.2022 08:20 | DEEPSEA STAVANGER |
| NO 34/9-U-1 Pre-Spud                  | 09.Apr.2022 17:40 | 09.Apr.2022 20:20 | DEEPSEA STAVANGER |
| NO 34/9-U-1 8 1/2"                    | 09.Apr.2022 20:20 | 11.Apr.2022 05:15 | DEEPSEA STAVANGER |
| NO 34/9-U-1 Permanent P&A (DP) w/ RIG | 11.Apr.2022 05:15 | 11.Apr.2022 13:10 | DEEPSEA STAVANGER |
| NO 34/9-1 S Pre-Spud                  | 09.Apr.2022 08:20 | 09.Apr.2022 14:35 | DEEPSEA STAVANGER |
| NO 34/9-1 S 26" x 42"                 | 09.Apr.2022 14:35 | 11.Apr.2022 19:20 | DEEPSEA STAVANGER |
| NO 34/9-1 S 26"                       | 11.Apr.2022 19:20 | 18.Apr.2022 04:20 | DEEPSEA STAVANGER |
| NO 34/9-1 S 17 1/2"                   | 18.Apr.2022 04:20 | 25.Apr.2022 08:15 | DEEPSEA STAVANGER |
| NO 34/9-1 S 17 1/2" x 20"             | 18.Apr.2022 04:20 | 18.Apr.2022 04:20 | DEEPSEA STAVANGER |
| NO 34/9-1 S 12 1/4" x 13 1/2"         | 25.Apr.2022 08:15 | 04.May.2022 15:30 | DEEPSEA STAVANGER |
| NO 34/9-1 S 10 5/8" x 12 1/4"         | 04.May.2022 15:30 | 20.May.2022 16:55 | DEEPSEA STAVANGER |
| NO 34/9-1 S 8 1/2" HPHT               | 20.May.2022 16:55 | 28.May.2022 10:30 | DEEPSEA STAVANGER |
| NO 34/9-1 S 6" HPHT                   | 28.May.2022 10:30 | 03.Jun.2022 18:30 | DEEPSEA STAVANGER |
| NO 34/9-1 S Permanent P&A (DP) w/ RIG | 03.Jun.2022 18:30 | 19.Jun.2022 04:00 | DEEPSEA STAVANGER |
| NO 34/9-1 S Move from Location        | 19.Jun.2022 04:00 | 19.Jun.2022 08:30 | DEEPSEA STAVANGER |

# 1.4.1 **Casing**

Table 1-4 Casing and liner depths

| Casing/Liner    | Shoe Depth (m MD) | FIT/LOT/XLOT (g/cm³ EMW ) |
|-----------------|-------------------|---------------------------|
| 8 ½" pilot hole | 1139.0 (hole TD)  | N/A                       |
| 30"             | 466.7             | N/A                       |
| 20"             | 1286.8            | 1.55 (FIT)                |
| 14"             | 3449.6            | 1.94 (XLOT, FPP)          |
| 11 3/4" (liner) | 3976.5            | 2.04 (LOT)                |
| 9 7/8"          | 4304.9            | 2.08 (LOT)                |
| 7" (liner)      | 4364.7            | 2.06 (LOT)                |



Page 10 of 196

Final well report, Pilot well NO 34/9-U-1

Doc. No. 2022-013511

Valid from: Dec 2022 Rev. no.: 0

#### **Drilling fluids** 1.4.2

# Table 1-5 Drilling fluids

and Exploration well NO 34/9-1 S Cambozola

| Section           | Section TD<br>(m MD) | Mud weight (sg) | Mud type                                         |
|-------------------|----------------------|-----------------|--------------------------------------------------|
| 8 ½" (pilot hole) | 1300                 | 1.03/1.30       | Seawater, Hi-vis sweeps/KCI mud for displacement |
| 26" x 42"         | 467.3                | 1.03            | Seawater, Hi-vis sweeps                          |
| 26"               | 1300                 | 1.03/1.30       | Seawater, Hi-vis sweeps/KCI mud for displacement |
| 17 ½"             | 3460                 | 1.40            | RheGuard OBM                                     |
| 12 ¼ x 13 ½"      | 3989                 | 1.70-1.71       | RheGuard OBM                                     |
| 10 5/8" x 12 ½"   | 4322                 | 1.96            | BaraECD OBM                                      |
| 8 ½"              | 4367                 | 1.96            | BaraECD OBM                                      |
| 6"                | 4455                 | 1.97-2.00       | BaraECD OBM                                      |



Doc. No. 2022-013511

Valid from: Dec 2022 Rev. no.: 0

# 1.5 Data acquisition summary

| Cambozola           | Data Acquisition Final       | Date:        | <b>#</b>  |
|---------------------|------------------------------|--------------|-----------|
| RKB: 30.0m          | 2444710441011101111111111    | 07 okt 2022  | equinor   |
| KKD. 30.0III        | NO 34/9-U-1                  | Made By:     | Revision: |
| Water Depth: 382.0m | Pilot hole Cambozola PL 1049 | M. Vanhatalo | 0.0       |

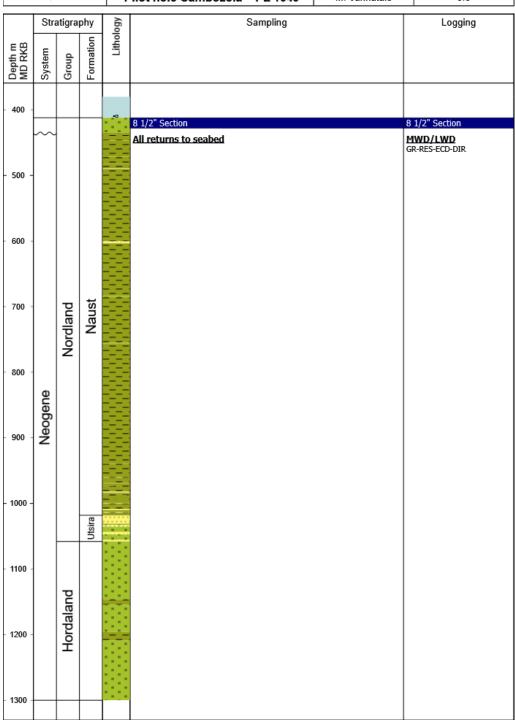



Figure 1-2 Data acquisition summary, NO 34/9-U-1



Final well report,
Pilot well NO 34/9-U-1

Doc. No. 2022-013511

and Exploration well NO 34/9-1 S Cambozola Valid from: Dec 2022 Rev. no.: 0

| Cambozola           | Data Acquisition Final          | Date:        | <b>#</b>  |
|---------------------|---------------------------------|--------------|-----------|
| RKB: 30.0m          | Data / toquiota o i i i i i i i | 22 okt 2022  | equinor   |
| KKD. 30.0III        | NO 34/9-1 S                     | Made By:     | Revision: |
| Water Depth: 382.0m | Cambozola PL1049                | M. Vanhatalo | 0         |

| Water Depth: 382.0m                      |            |           | Cambozola PL1049        | M. Vanhatalo | 0                                                                              |  |                                      |
|------------------------------------------|------------|-----------|-------------------------|--------------|--------------------------------------------------------------------------------|--|--------------------------------------|
|                                          | Stra       | atigra    | phy                     | ogy          | Sampling                                                                       |  | Logging                              |
| Depth m<br>MD RKB                        | System     | Group     | Formation               | Lithology    |                                                                                |  |                                      |
| - 400 -                                  |            |           |                         |              |                                                                                |  |                                      |
| - 500 -                                  | $\sim$     |           |                         |              | 26" Section                                                                    |  | 26" Section                          |
| - 600 -<br>- 700 -<br>- 800 -<br>- 900 - | Neogene    | Nordland  | Naust                   |              | All returns to seabed                                                          |  | MWD/LWD<br>GR-RES-ECD-DIR            |
| - 1100 -                                 |            |           | Utska                   |              |                                                                                |  |                                      |
| 1200 -                                   |            |           | ≝                       |              |                                                                                |  |                                      |
| - 1300 -                                 |            | g         | Hordaland undiff.       |              | 17 1/2" Section                                                                |  | 17 1/2" Section                      |
| - 1400 -                                 | Paleogene  | Hordaland | ρ                       |              | 5 ltr wet cuttings, every 10 m<br>0.5 kg wet cuttings for biostrat, every 10 m |  | MWD/LWD                              |
| - 1500 -                                 | ge         | ğ         | <u>a</u>                |              | 1 ltr mud sample, every 200 m                                                  |  | NBGR-GR-RES-ECD-DIR WL               |
| - 1600 -                                 | <u> </u>   | 운         | da                      |              | 2 x Isotube gas sample,every 100 m                                             |  | GR-CBL-IBC                           |
| - 1700 -                                 | Ра         |           | 후                       |              |                                                                                |  |                                      |
| - 1800 -<br>- 1900 -                     |            |           |                         |              |                                                                                |  |                                      |
| - 2000 -                                 |            | Rogaland  | Raider<br>Sein<br>Lista |              |                                                                                |  |                                      |
| - 2100 -                                 |            | ~~~       | VSh.                    |              |                                                                                |  |                                      |
| - 2200 -                                 |            |           | Jorsalfare              |              |                                                                                |  |                                      |
| - 2300 -                                 |            |           | Jors                    | ===          |                                                                                |  |                                      |
| - 2400 -                                 |            |           |                         |              |                                                                                |  |                                      |
| - 2500 -                                 |            |           |                         | ==           |                                                                                |  |                                      |
| - 2600 -                                 |            |           |                         |              |                                                                                |  |                                      |
| - 2700 -                                 |            |           |                         |              |                                                                                |  |                                      |
| - 2800 -<br>- 2900 -                     |            |           | ا به ا                  |              | 13 1/2" Section                                                                |  | 13 1/2" Section                      |
| - 3000 -                                 |            |           | Kyrre                   |              | 5 ltr wet cuttings, every 10 m<br>0.5 kg wet cuttings for biostrat, every 10 m |  | MWD/LWD<br>NBGR-GR-RES-Sonic-ECD-DIR |
| - 3100 -                                 | ဟ          | ŭ         |                         | ==           | 1 ltr mud sample, every 200 m<br>2 x Isotube gas sample, every 100 m           |  | WL<br>GR-CBL-IBC                     |
| 3200 -                                   | 2          | eff       |                         |              |                                                                                |  |                                      |
| - 3300 -                                 | <u>8</u>   | Shetland  |                         |              | 12 1/4" Section                                                                |  | 12 1/4" Section                      |
| - 3400 -                                 | Cretaceous |           |                         |              | 5 ltr wet cuttings, every 10 m<br>0.5 kg wet cuttings for biostrat, every 10 m |  | MWD/LWD<br>NBGR-GR-RES-Sonic-ECD-DIR |
| - 3500 -                                 | Ö          |           |                         |              | 1 ltr mud sample, every 200 m<br>2 x Isotube gas sample, every 100 m           |  | WL                                   |
| - 3600 -                                 |            |           | L.                      | ==           |                                                                                |  | GR-VSP                               |
| - 3700 -                                 |            |           | Tryggvason              | ==           | 8 1/2" Section                                                                 |  | 8 1/2" Section                       |
| - 3800 -                                 |            |           | удд                     | ==           | 5 ltr wet cuttings, every 3 m<br>0.5 kg wet cuttings for biostrat, every 3 m   |  | MWD/LWD<br>GR-RES-DEN-NEU-Sonic-CAL- |
| - 3900 -                                 |            |           |                         |              | 1 ltr mud sample, every 21 m                                                   |  | ECD-DIR                              |
| - 4000 -                                 |            |           | Svarte                  |              | 2 x Isotube gas sample, every 21 m                                             |  | 6" Castian                           |
| - 4100 -<br>- 4200 -                     |            |           | Sve                     |              | 6" Section 5 ltr wet cuttings, every 3 m                                       |  | 6" Section<br>MWD/LWD                |
| 4300 -                                   |            | je II     | Rødby (                 |              | 0.5 kg wet cuttings for biostrat, every 3 m                                    |  | GR-RES-DEN-NEU-CAL-ECD-              |
| - 4400 -                                 |            | Cromer    |                         |              | 1 ltr mud sample, every 21 m<br>2 x Isotube gas sample, every 21 m             |  | DIR<br>WL                            |
| - 4500 -                                 |            | Ť         | Sola                    |              |                                                                                |  | GR-PPC-MSIP                          |
|                                          |            |           |                         |              |                                                                                |  |                                      |

Figure 1-3 Data acquisition summary, NO 34/9-1 S Cambozola



Doc. No. 2022-013511

Valid from: Dec 2022 Rev. no.: 0

# 2 Exemptions and non-conformances

| Disp no | Title                        | Doc no                              | Status     |
|---------|------------------------------|-------------------------------------|------------|
| 238400  | 17" liner centralization     | Well Cementing.                     | Registered |
|         | not according to             | Author: Therese Karlbom             |            |
|         | requirement                  |                                     |            |
| 239519  | Not taking SCR's with        | Drilling Practice.                  | Terminated |
|         | cement pump                  | Author: Børge E. Nygård             |            |
| 239349  | HPHT Exploration wells:      | Drilling Practice.                  | Approved   |
|         | Use of 5 7/8" DP string      | Author: Børge E. Nygård             |            |
|         | without freshly MPI          |                                     |            |
|         | Inspected prior to HPHT      |                                     |            |
|         | mode                         |                                     |            |
| 237207  | Drilling pilot hole past the | Well Integrity Manual offshore      | Approved   |
|         | depth of investigation of    | operations.                         |            |
|         | site survey                  | Author: Ronny Kvalsund              |            |
| 239290  | Non standard casing          | Casing, tie-back, liner and         | Approved   |
|         | sizes for exploration wells  | conductor string design.            |            |
|         | planned in PC2 EXPL          | Author: Sylvester Rohan Marcou.     |            |
| 238673  | Use of BM3 curve             | Structural design and qualification | Approved   |
|         | instead of B1 curve for      | of components for subsea WH, XT     |            |
|         | Deepsea Stavanger            | and WOS.                            |            |
|         | wellhead fatigue analysis    | Author: Morten Aga                  |            |

# 3 Health, safety, environment and quality (HSE/Q)

# 3.1 RUH (Rapport Uønsket Hendelse), Safety Incident Cards

| Type (color code) | Synergi code | Number of |
|-------------------|--------------|-----------|
| Green             | 4            | 1         |
| Yellow            | 3            | 1         |
| Sum               |              | 2         |



Doc. No. 2022-013511

Valid from: Dec 2022 Rev. no.: 0

# 3.1.1 RUH details

WELLBORE: NO 34/9-U-1

| Synergi<br>no | Hazard | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|---------------|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1944792       | 3      | Synergi 1944792 (Approved) - 10.Apr.2022 - Nonconformity/quality deviation - Water leakage/ingress/pumped into aft pump room DSS 10.04.2022 at 01:15: General alarm sounded. All personnel mustered according to station bill. POB control within 13 minutes. Full headcount within 15 minutes. Situation normalized and non essential personnel dismissed once full headcount achieved. Debrief with all personnel In messroom after.  Detector causing the alarm was in starboard aft pump room.  Emergency response team and CCTV confirmed water ingress in the area. Emergency team opened watertight door to pump room for visual inspection as the water level could been seen clearly on the CCTV screen to be below lower level of watertight door.  Water leakage confirmed being from bursted GRE piping on seawater service pump discharge side. (GRE = Glass Reinforced Epoxy)  Seawater service pump stopped, resulting water ingress to also stop. Water pumped out with bilge system.  Estimated water volume ingress: 100m3-130m3 and list of 0.8 degrees to starboard. (much equipment in room that will have displacement reducing the net water volume) |



Doc. No. 2022-013511

Valid from: Dec 2022 Rev. no.: 0

# 3.2 Incidents by service and company

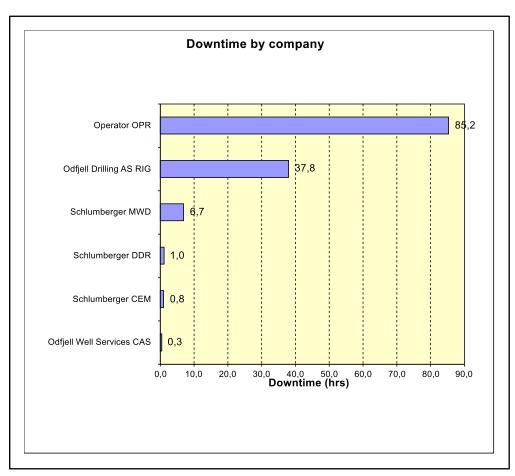



Figure 3-1 Downtime distributed by company

Figure 3-1 is based on the reported data found below.

SERVICE COMPANY: Casing CAS Odfjell Well Services

WELLBORE: NO 34/9-1 S

|                        |                                             |               |                                      |              | Downtim            | е                    |
|------------------------|---------------------------------------------|---------------|--------------------------------------|--------------|--------------------|----------------------|
| Incident start<br>time | Failure code                                | Synergi<br>no | Title                                | Total<br>hrs | Comp<br>share<br>% | Comp<br>share<br>hrs |
| 08.mai.2022            | CAS-E01 Remote oper. tongs w/integrated B-U | 1985455       | Communication issue with casing tong | 0.3          | 100                | 0.3                  |
|                        |                                             |               | Total                                |              |                    | 0.3                  |



Doc. No. 2022-013511

Valid from: Dec 2022 Rev. no.: 0

SERVICE COMPANY: Cementing CEM Schlumberger

WELLBORE: NO 34/9-1 S

|                     |                             |               |                                                            | ı            | Downtim            | е                    |
|---------------------|-----------------------------|---------------|------------------------------------------------------------|--------------|--------------------|----------------------|
| Incident start time | Failure code                | Synergi<br>no | Title                                                      | Total<br>hrs | Comp<br>share<br>% | Comp<br>share<br>hrs |
| 10.mai.2022         | CEM-E01 Equipment functions | 1983307       | Plug in cement bulk line to batch mixer                    | 1.0          | 33                 | 0.3                  |
| 13.apr.2022         | CEM-E01 Equipment functions | 1949080       | Unable to shear top plug when cementing 20" surface casing | 0.5          | 100                | 0.5                  |
|                     |                             |               | Total                                                      |              |                    | 0.8                  |

SERVICE COMPANY: Directional Drilling DDR Schlumberger

WELLBORE: NO 34/9-1 S

|                     |                       |               |                                                                                                       |           | Downtime        |                      |
|---------------------|-----------------------|---------------|-------------------------------------------------------------------------------------------------------|-----------|-----------------|----------------------|
| Incident start time | Failure code          | Synergi<br>no | Title                                                                                                 | Total hrs | Comp<br>share % | Comp<br>share<br>hrs |
| 12.apr.2022         | DDR-E31<br>Mechanical | 1948895       | Plugged nozzles<br>in 26" bit leading<br>to high SPP and<br>bursted rupture<br>discs on mud<br>pumps. | 1.0       | 100             | 1.0                  |
|                     |                       |               | Total                                                                                                 |           |                 | 1.0                  |



Doc. No. 2022-013511

Valid from: Dec 2022 Rev. no.: 0

**SERVICE COMPANY:** MWD - Measurement While Drilling MWD Schlumberger

WELLBORE: NO 34/9-1 S

|                     |                  |               |                                              | Do        | wntime             |                      |
|---------------------|------------------|---------------|----------------------------------------------|-----------|--------------------|----------------------|
| Incident start time | Failure code     | Synergi<br>no | Title                                        | Total hrs | Comp<br>share<br>% | Comp<br>share<br>hrs |
| 26.apr.2022         | MWD-E33 Software | 1964837       | No realtime MWD data due to software issues. | 0.5       | 100                | 0.5                  |
| 17.apr.2022         | MWD-E33 Software | 1953946       | Lack of communication with 17 1/2" MWD tool. | 6.2       | 100                | 6.2                  |
|                     |                  |               | Total                                        |           |                    | 6.8                  |

**SERVICE COMPANY:** Operator OPR Operator

WELLBORE: NO 34/9-1 S

|                     |                               |               |                                                                                        | D            | owntime            |                      |
|---------------------|-------------------------------|---------------|----------------------------------------------------------------------------------------|--------------|--------------------|----------------------|
| Incident start time | Failure code                  | Synergi<br>no | Title                                                                                  | Total<br>hrs | Comp<br>share<br>% | Comp<br>share<br>hrs |
| 01.mai.2022         | RIG-01 Procedure              | 1973605       | Failed FIT below 11 3/4" liner shoe.                                                   | 58.0         | 100                | 58.0                 |
| 27.apr.2022         | RIG-02 Doc./Spec.             | 1966007       | Unable to run 11 3/4" liner due to high friction inside 14" casing. NPT: 21 hr, 20 min | 21.3         | 100                | 21.3                 |
| 10.mai.2022         | CEM-E01 Equipment functions   | 1983307       | Plug in cement bulk line to batch mixer                                                | 1.0          | 34                 | 0.3                  |
| 23.mai.2022         | RIG-03 Procedure not followed | 2000928       | Using incorrect pump rate pumping out of hole.                                         | 8.3          | 66.7               | 5.5                  |
|                     |                               |               | Total                                                                                  |              |                    | 85.2                 |

Classification: Restricted Status: Final www.equinor.com



Doc. No. 2022-013511

Valid from: Dec 2022 Rev. no.: 0

SERVICE COMPANY: Rig Operations RIG Odfjell Drilling AS

WELLBORE: NO 34/9-1 S

|                     |                               |               |                                                                            | <b>5</b> (1 |                 |                      |
|---------------------|-------------------------------|---------------|----------------------------------------------------------------------------|-------------|-----------------|----------------------|
|                     |                               |               |                                                                            | Downtime    |                 |                      |
| Incident start time | Failure code                  | Synergi<br>no | Title                                                                      | Total hrs   | Comp<br>share % | Comp<br>share<br>hrs |
| 24.mai.2022         | RIG-E07 Top drive             | 2003131       | Worn out dies on torque wrench.                                            | 1.3         | 100             | 1.3                  |
| 10.jun.2022         | RIG-E014 Other                | 2022058       | Leak in choke line during high pressure testing of choke and kill manifold | 32.3        | 100             | 32.3                 |
| 10.mai.2022         | CEM-E01 Equipment functions   | 1983307       | Plug in cement<br>bulk line to batch<br>mixer                              | 1.0         | 33              | 0.3                  |
| 17.apr.2022         | RIG-E348 Slips                | 1953764       | Leakage in PS30 slips.                                                     | 0.5         | 100             | 0.5                  |
| 16.apr.2022         | RIG-E01 BOP choke manifold    | 1952379       | Leakage during<br>testing of K/C<br>lines                                  | 0.3         | 100             | 0.3                  |
| 23.mai.2022         | RIG-03 Procedure not followed | 2000928       | Using incorrect pump rate pumping out of hole.                             | 8.3         | 33.3            | 2.7                  |
| 27.apr.2022         | RIG-E345 Elevator             | 1966036       | Issue with no closed signal on AMS elevator.                               | 0.5         | 100             | 0.5                  |
|                     |                               |               | Total                                                                      |             |                 | 37.8                 |

Classification: Restricted Status: Final www.equinor.com



Final well report, Pilot well NO 34/9-U-1

and Exploration well NO 34/9-1 S Cambozola Valid from: Dec 2022 Rev. no.: 0

### 3.3 Experience summary

Subject: Omitted 17" liner by drilling pilot hole and 26" section past site survey depth

Section: NO 34/9-1 S, 26"

Rep date: 11.Apr.2022

Keywords: DRILLING

**Downtime:** 0 **Pot time improvements:** 120

Comp inv: Equinor

#### **Description:**

A dispensation was applied for and approved (dispensation: 237207) to drill the pilot hole and the following 26" section past the depth of investigation of the site survey.

Doc. No. 2022-013511

A shallow geohazard evaluation and shallow gas classification was given for the well, with a depth of investigation down to 1041 mTVD RKB. The report stated that shallow water flow at the location was considered unlikely. A slight risk of gas was attached to a chaotic package on the seismic data between 610 and 655 m MSL, and therefore Class 1 was assigned to the planned well location down to Top Hordaland.

As a 20" casing shoe was needed at a setting depth of minimum 1250 m TVDRKB, to be able to drill a 17 ½" section past the pressure build up in lower Hordaland, an in-depth investigation of possible sand/shallow gas in the Hordaland group was made on the CGG18M01 seismic. This concluded that there was no indication of gas filled sands. However, because of seismic resolution thin layers of sand/shallow gas was not likely but could not be ruled completely out. The application for dispensation was based on a thorough risk assessment, which included presence of gas in sands in thicknesses below seismic resolution, shallow gas incidents from reference wells, pore pressure prognosis, reference wells experiences with suggested well design, ECD simulations during dynamic kill and contingency plans if shallow gas or water flow was encountered.

No shallow gas or water flow was encountered in the pilot hole or the 26" section, and the 20" surface casing was installed on planned depth. A sufficient FIT was achieved to drill the 17 1/2" section to planned TD, and thus the 17" liner could be omitted from the well design.

#### Future recommended solution:

If the site survey depth is so shallow it will affect the well design by including an extra section, check if able to challenge site survey depth.

Subject: Dual drilling - drilling pilot hole in MAIN while drilling 26"x42" section in AUX

Section: NO 34/9-1 S, 26"
Rep date: 11.Apr.2022
Keywords: DRILLING

**Downtime:** 0 **Pot time improvements:** 12

Comp inv: Odfjell

#### **Description:**

Drilling pilot hole in MAIN while drilling 26"x42" section and 26" section in AUX. Total time for pilot hole drilling and P&A was 1.8 days. Some waiting time for BOP in-between well scope reduced the actual time saving.



Final well report, Doc. No. 2022-013511

Pilot well NO 34/9-U-1

and Exploration well NO 34/9-1 S Cambozola Valid from: Dec 2022 Rev. no.: 0

Subject: Verification of barrier status for P&A

**Section:** NO 34/9-1 S, 17 1/2"

**Rep date:** 23.Apr.2022

**Keywords:** WIRELINE ELECTRICAL

Comp inv: Schlumberger

#### **Description:**

This experience is related to an improvement idea to delay logging the 14" casing until after the 11 3/4" liner is installed to save rig up/down time and logging both casings in one run.

Lost 2m3 during pumping of cement and another 2m3 during cement displacement. Pumped half shoetrack above theoretical bump and still didn't bump the plug.

#### Immediate solution:

Since it was not possible to say where the loss zone was it was decided to log and verify sufficient barrier against Lista formation for P&A purposes. Therefore, the improvement opportunity was not achieved.

#### Future recommended solution:

The improvement opportunity can be tried on the next well with a similar design or improvement opportunity.

Subject: Successfully achieved 1855m continuous interval of good cement behind 14" casing

**Section:** NO 34/9-1 S, 17 1/2"

**Rep date:** 23.Apr.2022 **Keywords:** CEMENTING

**Downtime:** 0 **Pot time improvements:** 144

Comp inv: Schlumberger

#### **Description:**

Encountered sandy layers in Lista Formation, requiring a barrier for P&A. If able to achieve TOC above Lista during cementing of 14" casing, we can avoid cutting 14" casing deep to set an open hole barrier against Lista. By planning for a long (~1700 m) 14" casing cement job that will isolate Lista Formation, it was possible to omit 17" liner in the casing design

#### Immediate solution:

Several issues were encountered related to the 14" casing cement job. The cement head was sent out with XOs not rated for the heavy weight of the over 3000m long 14" casing. Excellent One Team collaboration involving Odfjell. Schlumberger and Equinor offshore and onshore ensured that we were able to rush mobilize a backup cement head and an extra boat from Mongstad. We were able to re-build the cement head offshore prior to the cement job with a set of various XOs already available on the rig.

Experienced significant challenges mixing and pumping 1,95sg G-silica cement slurry, see separate DBR experience. Not possible to pump the given slurry recipe from onshore. Pumped 118m3 1,91-1,92sg slurry vs 122m3 1,95sg planned. Top plug did not bump, see separate DBR experience. Floats were interpreted not to hold. Pumped and bled back volumes three times in an attempt to close the float. No-go. Needed to WOC while holding pressure on the line to prevent u-tubing of cement into the casing.

Performed clean-out run to remove uncertainty of the TOC inside casing, observed TOC just 5m above the landing collar.



Page 21 of 196

Final well report,
Pilot well NO 34/9-U-1
and Exploration well NO 34/9-1 S Cambozola

Doc. No. 2022-013511

Valid from: Dec 2022 Rev. no.: 0

Performed CBL logging on wireline. Observed 1855m continuous interval of good cement with high isolation potential behind 14" casing. TOC at 1474m which is far above Lista, meaning that it will be sufficient to just install a 14" EZSV and pump cement on top for P&A of Lista, saving many hours and risks compared to cut and pull casing in open hole.

#### Future recommended solution:

This experience shows that it is possible to achieve TOC above Lista in this area, despite casing shoe being 1500m deeper than top Lista.

Subject: Unable to run 11 3/4" liner due to high friction inside 14" casing

**Section:** NO 34/9-1 S, 12 1/4" x 13 1/2"

Rep date: 27.Apr.2022 Keywords: CASING/LINER

**Downtime:** 21.3 **Pot time improvements:** 0

Comp inv: Schlumberger Synergi no: 1966007

#### Synergi desc:

Synergi 1966007 (Closed) - 27.Apr.2022 - Nonconformity/quality deviation - Unable to run 11 3/4" liner due to high friction inside 14" casing. NPT: 21 hr, 20 min

RIH with 11 3/4" liner to 693m. Observed higher weight required to run liner due to friction. Decided to POOH and remove centralizers and stop collars due to tight tolerances.

#### **Description:**

RIH with 11 3/4" liner on 5 7/8" DP to 693m. Observed high weight required to run liner due to friction. Decided to POOH with the liner. POOH compensated with ventilated standpipe due to tight clearances and volume control.

Meanwhile, measured backup shoe joint on deck OD: 11 3/4". Gap between the stop collar and the VariForm centralizer: 47 mm and 44 mm. Installation guide said that the gap should be min 63.5 mm and max 76.2 mm to allow room for the bow spring to be completely collapse.

Removed centralizers and ran a slick 11 3/4" liner, except for the shoe track with optimized number of centralizers and stop collars. Observed friction once shoe track entered 14" casing. Experienced friction during running, however we were able to rotate with 10 rpm/3 kNm. RIH and tagged 12 1/4" TD with 5 ton weight. Pulled back and set liner. Cemented liner without any losses and bumped plug. Logged 11 5/8" liner cement after 17 hours WOC, result was 73m good bonded cement above Syarte Formation.

#### Immediate solution:

Based on the findings, the possible root cause for the high friction while RIH is believed to be the gap between stop collar and centralizer being below recommended value preventing centralizer from collapsing enough when in contact with 14" casing while RIH.

Inspected all centralizers/stop collars, shoe joint on the way out for any damage. Measured gap from 42mm - 54mm, smaller than the recommended value and cut all the centralizers/stop collars below recommendation. That was all centralizers except the shoe track centralizers (min 63.5 mm and max 76.2 mm). Optimized the centralization on the shoe track by reducing from 2 per joint to 1 per joint ensuring good distance from stop collar to allow centralizers to sufficiently collapse while RIH. Grinder (Vinkelsliper) was used to cut centralizers/stop collars without any issues.



Page 22 of 196

Final well report, Doc. No. 2022-013511

Pilot well NO 34/9-U-1

and Exploration well NO 34/9-1 S Cambozola Valid from: Dec 2022 Rev. no.: 0

#### Future recommended solution:

When using the same type of centralizers, ensure those are installed as per the guidelines of vendor. Alternatively, consider using suitable low friction centralizers on casings with similar tight clearances.

Subject: Base Oil / PreMix / Light mud in mud cooler system while drilling

**Section:** NO 34/9-1 S, 10 5/8" x 12 1/4"

**Rep date:** 04.May.2022

Keywords: OBM

**Downtime:** 0 **Pot time improvements:** 0

Comp inv: Halliburton

#### **Description:**

While discussing upcoming mud cooler operation with pump room team uncertainties regarding fluid in lines was raised. Procedure for mud cooler is to flush lines with Base Oil / Pre-Mix after use. 3.5 m3 of Base Oil / pre-mix / Light mud from the mud cooler system into active system will give a too high drop in mud weight.

#### Immediate solution:

Options were discussed to flush mud cooler mud lines to active mud and isolate current content into a separate pit to ensure no light spots of mud. Highlighted issue with drill floor. Flushed lines to BaraECD during pumps off for reamer operation to ensure no light mud pumped into wellbore.

#### Future recommended solution:

Include a point in the DOP checklist; ensure mud cooler flushed and replaced with fresh mud prior to drilling out of the casing shoe.

Subject: Good ECD management using BaraECD

**Section:** NO 34/9-1 S, 10 5/8" x 12 1/4"

**Rep date:** 05.May.2022 **Keywords:** DRILLING FLUID

**Downtime:** 0 **Pot time improvements:** 0

Comp inv: Equinor

#### **Description:**

Low ECD values were experienced while drilling the section. It was on average 3 to 4 points between ECD and ESD. Reduced to 2 points when the hole was clean. This was very useful as the target FIT for the 11 3/4" shoe of 2.06sg was not achieved, but a LOT of 2.04sg. This reduced the operational margins since planned MW was 1.96sg. At TD mud rheology was optimized for running and cementing 9 7/8" casing in 11 3/4" liner.

#### Future recommended solution:

The mud performed well for the drilling, and it is recommended to be used when margins are tight.



Page 23 of 196

Final well report, Doc. No. 2022-013511

Pilot well NO 34/9-U-1

and Exploration well NO 34/9-1 S Cambozola Valid from: Dec 2022 Rev. no.: 0

Subject: Ran short stands of 9 7/8" SLIJ-II casing

**Section:** NO 34/9-1 S, 10 5/8" x 12 1/4"

Rep date: 08.May.2022 Keywords: CASING/LINER

**Downtime:** 0 **Pot time improvements:** 0

Comp inv: Equinor

#### **Description:**

Ran 35 short stands of VAM SLIJ-II 9 7/8" casing in the bottom part of the casing string (due to small clearance to 11 3/4" liner). These stands are made up of re-cut joints with average stand length of 34.9m (approximately ~2m short for the HR), conflicting with upper tail arm on HR. These leads to inconsistent running speed for the VAM SLIJ-II 9 7/8" casing stands.

#### Immediate solution:

Watchman on fingerboard when running these short stands. Use Aux HR for remaining stands.

#### Future recommended solution:

Plan not to use re-cut casing joints. If necessary to use re-cut casing evaluate sending out the joints with pups.

Subject: Cement head sent out with too short pup joint

**Section:** NO 34/9-1 S. 10 5/8" x 12 1/4"

**Rep date:** 09.May.2022 **Keywords:** CEMENTING

**Downtime:** 0 **Pot time improvements:** 0

Comp inv: Schlumberger

#### **Description:**

Cement head came out with a pup joint of 3.8 m length. This is too short to have elevator on when we screw in with Top Drive.

#### Immediate solution:

Cement head was made up with a longer pup joints offshore.

#### Future recommended solution:

All cement heads should be sent with pup joint length 6 - 6.5m.

Subject: Use of sonic on LWD and VSP reduced uncertainty of Top Reservoir

**Section:** NO 34/9-1 S, 10 5/8" x 12 1/4"

**Rep date:** 17.May.2022

Keywords: LOGGING/EVALUATION

**Downtime:** 0 **Pot time improvements:** 0

Comp inv: Equinor

#### **Description:**

Sonic while drilling was used in the 12  $\frac{1}{4}$ " section, to confirm the velocity model and reduce uncertainty of Top Reservoir from  $\pm 75$ m TVD to  $\pm 50$ m TVD. This allowed for setting the 9  $\frac{7}{8}$ " shoe as 50m deeper than pre-drill estimates. Later a



Final well report, Doc. No. 2022-013511

Pilot well NO 34/9-U-1

and Exploration well NO 34/9-1 S Cambozola Valid from: Dec 2022 Rev. no.: 0

VSP was run to further reduce the uncertainty of Top Reservoir to ± 22m TVD, which provided the setting depth of the 7" liner contingency.

#### Future recommended solution:

When the setting depth of the shoe is critical to get as deep as possible, and there is a possibility to reduce the uncertainty of the formations tops with the use of sonic, SWD or a VSP, these measures should be evaluated.

Subject: Performing FIT with low margins with water in HPHT well.

**Section:** NO 34/9-1 S, 10 5/8" x 12 1/4"

**Rep date:** 20.May.2022 **Keywords:** DRILLING

**Downtime:** 0 **Pot time improvements:** 0.5

Comp inv: Odfjell Drilling AS

#### **Description:**

The FIT below the 9 7/8" was planned with water. The mud system used for drilling new formation was 1.99 sg. The procedure for line up is to pump down the drill string and the annulus at the same time.

When filling pipe it was required to pump ca 1.2 m3 to fill the system. Was observed that pressure increased when filling up the kelly hose (high stick up). After the kelly hose was filled up, the pressure dropped indicating filling the pipe and replacing the heavy mud with water (see attachment).

### Immediate solution:

Used mud to perform the FIT.

#### Future recommended solution:

Use mud for performing marginal FITs and with mud systems that will be affected by water in the system. Risk of mud contamination with water needs to be evaluated prior to deciding to use water. An alternative could be to fill up lines ensure lines are filled with mud and build some pressure before lining up to the cement unit if using water.

Subject: Low ECD of mud enabled reaching the overall well objectives

**Section:** NO 34/9-1 S, 8 1/2" HPHT

**Rep date:** 20.May.2022 **Keywords:** DRILLING FLUID

**Downtime:** 0 **Pot time improvements:** 36

Comp inv: Equinor

#### **Description:**

Even though the formation strength was lower than prognosed, and a 7" contingency liner had to be installed, the mud performed well and the low ECD mud enabled drilling to final TD.

#### Future recommended solution:

The mud performed well for the drilling operation, and it is recommended where tight margins are expected as was the case for this section after the low leak off test.



Final well report, Doc. No. 2022-013511

Pilot well NO 34/9-U-1

and Exploration well NO 34/9-1 S Cambozola Valid from: Dec 2022 Rev. no.: 0

Subject: Weak formation strength triggering 6" section

**Section:** NO 34/9-1 S, 8 1/2" HPHT

Rep date: 21.May.2022 Keywords: CASING/LINER

**Downtime:** 0 **Pot time improvements:** 0

Comp inv: Equinor

#### **Description:**

Based on the 2.06+ sg LOT obtained prior to LCM squeeze and limited kick margin, and based on the LCM squeeze results and gas readings it was decided to stop drilling 8 1/2" section at 10 m above updated 2xTVD uncertainty above reservoir.

Subject: Pumping rate in swab calculations

**Section:** NO 34/9-1 S, 6" HPHT

**Rep date:** 02.Jun.2022 **Keywords:** DRILLING FLUID

**Downtime:** 0 **Pot time improvements:** 1.5

Comp inv: Halliburton

#### **Description:**

Background: For pulling out of hole in the 6" section swab simulation showed that it was necessary to pump OOH, due to low margins towards prognosed pore pressure at TD (2.01 sg limit in swab simulation including 2 point safety margin and 2.02 sg ESD).

Swab simulation: The swab simulations showed that it was possible to pull faster (0.50 m/s) when pumping with 720 lpm, compared to (0.38 m/s) when pumping with 550 lpm.

Operation: The driller experienced that even though the pulling speed was faster when pumping with 720 lpm, the extra flow caused additional time spent on ramping up the pumps + bleeding down pressure prior to connection. This resulted in that the total tripping time was faster when pumping with 550 lpm compared to 720 lpm.

#### Immediate solution:

Used the optimum pumping rate to achieve the lowest time spent on tripping including connections.

#### **Future recommended solution:**

For wells with low margins that need to pump out of hole, it can be beneficial to simulate with different pumping rates to allow driller to optimize tripping sequence.

Page 25 of 196



Page 26 of 196

Final well report, Doc. No. 2022-013511

Pilot well NO 34/9-U-1

and Exploration well NO 34/9-1 S Cambozola Valid from: Dec 2022 Rev. no.: 0

Subject: Use of MWD for cement dress off

Section: NO 34/9-1 S, Permanent P&A (DP) w/ RIG

**Rep date:** 05.Jun.2022

Keywords: PLUGBACK/KICK-OFF

**Downtime:** 0 **Pot time improvements:** 0

Comp inv: Equinor

#### **Description:**

The MWD tool was used in the dress off BHA for the cement plug#1. The tool was needed to have better control on ESD and ECD due to the tight drilling margins.

#### Future recommended solution:

The value of using the MWD for dress-off assembly in open hole should be evaluated on a case-by-case basis even though it was a success.

Based on the drilling operations parameters it should be possible to perform hydraulic simulations and establish the operational window. This could save the cost for using the MWD.

Subject: Filling pipe every 500m

Section: NO 34/9-1 S, Permanent P&A (DP) w/ RIG

**Rep date:** 10.Jun.2022

Keywords: HTHP

**Downtime:** 0 **Pot time improvements:** 1.5

Comp inv: Odfjell Drilling AS

### **Description:**

The HPHT manual states that while tripping in hole DP shall be filled every 500m. And this is based on GL3506. This requirement was challenged based on some of the implemented measures for tripping:

- The string will have at least 2 new floats
- The floats are pressure tested.
- The trip sheets are checked every 5 stands
- Circulate B/U when bit is on bottom

Filling the pipe every 1000m is the proposed filling interval and this does not increase the operational risk. Over several trips this becomes a big time saving.

#### Immediate solution:

Started filling pipe every 1000m.

#### Future recommended solution:

Feedback from expert center is that 500m is only a guideline. The proposed filling interval of 1000m should be ok. See attached mail. The necessary checks on floats and DP capacities need to be verified to ensure the equipment limits are not exceeded. Future DOP's should be updated accordingly.



Page 27 of 196

Final well report, Doc. No. 2022-013511

Pilot well NO 34/9-U-1

and Exploration well NO 34/9-1 S Cambozola Valid from: Dec 2022 Rev. no.: 0

Subject: Pulling seal assembly with SRT and pack off

Section: NO 34/9-1 S, Permanent P&A (DP) w/ RIG

**Rep date:** 13.Jun.2022 **Keywords:** FISHING

**Downtime:** 0 **Pot time improvements:** 6

Comp inv: Baker Hughes

#### **Description:**

Originally it was not planned to include a pack off in the BHA for pulling seal assembly, but Baker fishing had a backup on the rig and we decided to run that. In that way we were able to circulate up annulus through cut 9 7/8" casing prior to POOH with the SA.

#### Future recommended solution:

Benefits of using a pack-off in the BHA while pulling seal assembly:

- Well control is improved.
- If gas below seal assembly, it can be circulated out instead of waiting for it to migrate out. (Potential time saving).

### 3.4 Time distribution

### 3.4.1 Pilot hole

|                                          |                   | Length | Buc  | lget | Act  | ual  | Ops   |
|------------------------------------------|-------------------|--------|------|------|------|------|-------|
| Section                                  | Start time        | m      | hrs  | days | hrs  | days | (f)   |
| NO 34/9-U-1 Pre-Spud                     | 09.Apr.2022 17:40 | 0.0    | 3.5  | 0.1  | 2.7  | 0.1  | 100.0 |
| NO 34/9-U-1 8 1/2"                       | 09.Apr.2022 20:20 | 888.0  | 47.0 | 2.0  | 32.9 | 1.4  | 100.0 |
| NO 34/9-U-1 Permanent<br>P&A (DP) w/ RIG | 11.Apr.2022 05:15 | 0.0    |      | 0.5  | 7.9  | 0.3  | 100.0 |
| Sum                                      |                   |        | 61.7 | 2.6  | 43.5 | 1.8  |       |



Doc. No. 2022-013511

Valid from: Dec 2022 Rev. no.: 0

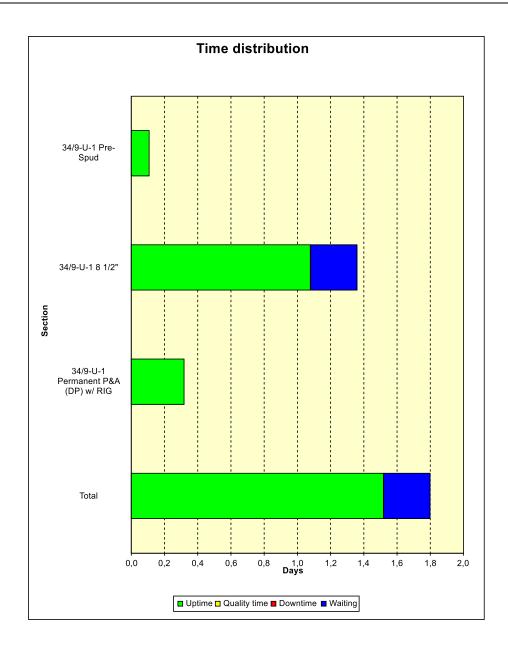



Figure 3-2 Time distribution, NO 34/9-U-1 Cambozola

The graph above in Figure 3-2 is based on details found in Table 3-1.

Table 3-1 Time distribution, NO 34/9-U-1 Cambozola

| Section                            | Downtime<br>(days) | Uptime<br>(days) | Quality time<br>(days) | Waiting time<br>(days) | Total time<br>(days) |
|------------------------------------|--------------------|------------------|------------------------|------------------------|----------------------|
| 34/9-U-1 Pre-Spud                  | 0.0                | 0.1              | 0.0                    | 0.0                    | 0.1                  |
| 34/9-U-1 8 1/2"                    | 0.0                | 1.1              | 0.0                    | 0.3                    | 1.4                  |
| 34/9-U-1 Permanent P&A (DP) w/ RIG | 0.0                | 0.3              | 0.0                    | 0.0                    | 0.3                  |
| Total                              | 0.0                | 1.5              | 0.0                    | 0.3                    | 1.8                  |

Page 28 of 196



Doc. No. 2022-013511

Valid from: Dec 2022 Rev. no.: 0

# 3.4.2 34/9-1 S well

Classification: Restricted

|                                          |                      | Length | Budget |       | Act    | ual  | Ops   |
|------------------------------------------|----------------------|--------|--------|-------|--------|------|-------|
| Section                                  | Start time           | m      | hrs    | days  | hrs    | days | (f)   |
| NO 34/9-1 S Move to Location             | 09.Apr.2022<br>00:00 |        | 31.6   | 1.3   | 8.3    | 0.3  | 100.0 |
| NO 34/9-1 S Pre-Spud                     | 09.Apr.2022<br>08:20 | - 13.0 | 5.5    | 0.2   | 6.3    | 0.3  | 100.0 |
| NO 34/9-1 S 26" x 42"                    | 09.Apr.2022<br>14:35 | 35.7   | 46.6   | 1.9   | 52.8   | 2.2  | 100.0 |
| NO 34/9-1 S 26"                          | 11.Apr.2022<br>19:20 | 835.3  | 223.0  | 9.3   | 153.5  | 6.4  | 94.5  |
| NO 34/9-1 S 17 1/2"                      | 18.Apr.2022<br>04:20 | 2160.0 | 390.6  | 16.3  | 171.9  | 7.2  | 100.0 |
| NO 34/9-1 S 12 1/4" x 13 1/2"            | 25.Apr.2022<br>08:15 | 533.0  | 342.1  | 14.3  | 223.3  | 9.3  | 64.0  |
| NO 34/9-1 S 10 5/8" x 12 1/4"            | 04.May.2022<br>15:30 | 329.0  | 317.8  | 13.2  | 385.4  | 16.1 | 99.7  |
| NO 34/9-1 S 8 1/2"<br>HPHT               | 20.May.2022<br>16:55 | 45.0   | 282.0  | 11.8  | 185.6  | 7.7  | 94.9  |
| NO 34/9-1 S 6" HPHT                      | 28.May.2022<br>10:30 | 85.0   | 437.0  | 18.2  | 152.0  | 6.3  | 100.0 |
| NO 34/9-1 S Permanent<br>P&A (DP) w/ RIG | 03.Jun.2022<br>18:30 |        | 450.0  | 18.8  | 369.5  | 15.4 | 90.8  |
| NO 34/9-1 S Move from Location           | 19.Jun.2022<br>04:00 |        | 5.0    | 0.2   | 4.5    | 0.2  | 100.0 |
| Sum                                      |                      |        | 2531.2 | 105.5 | 1713.1 | 71.4 |       |



Doc. No. 2022-013511

Valid from: Dec 2022 Rev. no.: 0

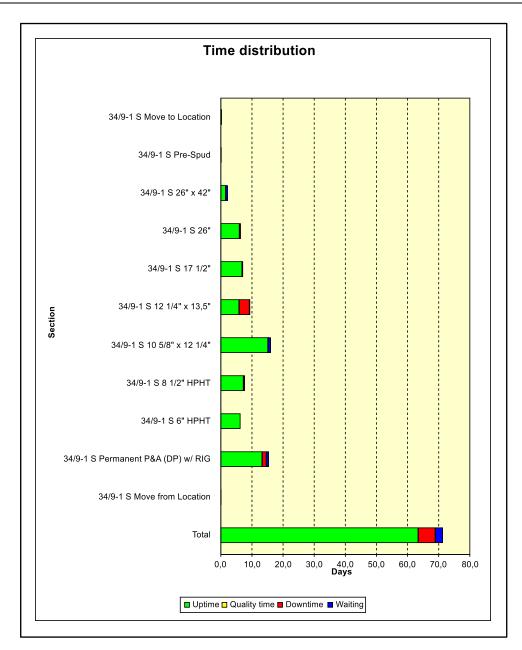



Figure 3-3 Time distribution, NO 34/9-1S Cambozola

The graph above in Figure 3-3 is based on details found in Table 3-2.

Classification: Restricted Status: Final www.equinor.com



Page 31 of 196

Final well report,
Pilot well NO 34/9-U-1
and Exploration well NO 34/9-1 S Cambozola

Doc. No. 2022-013511

Valid from: Dec 2022 Rev. no.: 0

Table 3-2 Time distribution, NO 34/9-1 S Cambozola

| Section                            | Downtime<br>(days) | Uptime<br>(days) | Quality<br>time<br>(days) | Waiting time<br>(days) | Total time (days) |
|------------------------------------|--------------------|------------------|---------------------------|------------------------|-------------------|
| 34/9-1 S Move to Location          | 0.0                | 0.3              | 0.0                       | 0.0                    | 0.3               |
| 34/9-1 S Pre-Spud                  | 0.0                | 0.3              | 0.0                       | 0.0                    | 0.3               |
| 34/9-1 S 26" x 42"                 | 0.0                | 1.6              | 0.0                       | 0.6                    | 2.2               |
| 34/9-1 S 26"                       | 0.4                | 6.0              | 0.0                       | 0.0                    | 6.4               |
| 34/9-1 S 17 1/2"                   | 0.0                | 6.9              | 0.0                       | 0.3                    | 7.2               |
| 34/9-1 S 12 1/4" x 13 1/2"         | 3.3                | 5.9              | 0.0                       | 0.0                    | 9.3               |
| 34/9-1 S 10 5/8" x 12 1/4"         | 0.1                | 15.2             | 0.0                       | 0.8                    | 16.1              |
| 34/9-1 S 8 1/2" HPHT               | 0.4                | 7.3              | 0.0                       | 0.0                    | 7.7               |
| 34/9-1 S 6" HPHT                   | 0.0                | 6.3              | 0.0                       | 0.0                    | 6.3               |
| 34/9-1 S Permanent P&A (DP) w/ RIG | 1.3                | 13.3             | 0.0                       | 0.7                    | 15.4              |
| 34/9-1 S Move from Location        | 0.0                | 0.2              | 0.0                       | 0.0                    | 0.2               |
| Total                              | 5.5                | 63.5             | 0.0                       | 2.4                    | 71.4              |



Doc. No. 2022-013511

Valid from: Dec 2022 Rev. no.: 0

# 4 Geology and formation data report

### 4.1 Geological setting and results

The Cambozola North prospect is located in the Magne Sub-Basin in the Northern Viking Graben within PL1049. The concept of the prospect was deep water fan turbidites within the Sola Formation of Lower Cretaceous age (mid Aptian – early Albian). The nearest discoveries are the Afrodite gas/condensate discovery about 1km from the eastern extreme of Cambozola North and the Hyperion gas/condensate discovery about 20km to the west. The nearest producing field is the Kvitebjørn Field about 20km to the south-west of the westernmost part of the prospect.

No wells in the Northern Viking Graben have revealed viable reservoir of Aptian age hence this play has not been proven in this area. The model for the trap is an entirely encased reservoir in Early Cretaceous mudstones. The main trapping mechanism is lateral pinch-out of the reservoir around the perimeter of the fan. The feeder channels for the submarine fan are located down-dip of the main reservoir and unlikely to be hydrocarbon leakage points.

Upper Jurassic aged marine shales of the Heather and Draupne formations are the source rocks in the area. Both are mature and the fetch area is relatively large. Both gas and condensate could be expected. Hydrocarbon charge relies mainly on vertical migration of gas.

The well penetrated sediments of Quaternary to Cretaceous age. The stratigraphy was as expected, and the uncertainty of the formation tops were within the prognosis with some exceptions. Top Sele Formation (38m thickness), top Våle Formation (56m thickness) in the Rogaland Group as well as top Blodøks Formation (20m thickness) and top Rødby Formation (180m thickness) in the Cromer Knoll Group, were not in the pre well prognosis, but have been added to the lithostratigraphic table postwell (Table 4-3). In addition, the Tryggvason Formation came in 49m deeper than prognosis, the Svarte Formation came in 91m deeper, and the Sola Formation came in 53m deeper than prognosis. The mis-ties between prognosed vs actual formation tops are due to incorrect picked formation tops in reference wells or uncertainty in seismic interpretation.

The reservoir prognosed n Sola Formation is proved not to represent deep water turbidite reservoir. However, top prognosed reservoir/top Sola Formation represent a transition from shales in the lower part of Rødby Formation to more silty shales and sparse traces of sandstone. The appearance of silt and traces of sandstone might represent distal parts of deep water turbidites.

An illustration of prognosed vs actual stratigraphy and lithology for well NO 34/9-1 S is presented in Figure 4-1. The figure also represents what was observed in the pilot well NO 34/9-U-1.



Doc. No. 2022-013511

Valid from: Dec 2022 Rev. no.: 0

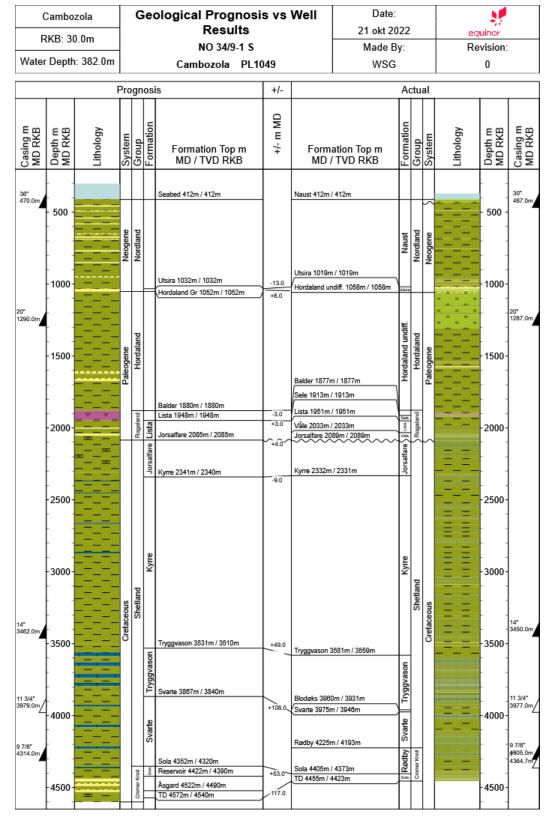



Figure 4-1 Geological prognosis versus well results, NO 34/9-1 S Cambozola

Classification: Restricted Status: Final www.equinor.com



Doc. No. 2022-013511

Valid from: Dec 2022 Rev. no.: 0

# 4.2 Shallow gas results

The Cambozola North site survey was completed in 2020 at the planned well location. The survey data was acquired by Gardline Ltd. The well location NO 34/9-1 S was assigned a 'Class 0' shallow gas warning from seabed to 640m ±10m TVD RKB. Below this depth and down to 685 ±12m TVD RKB a 'Class 1' warning was given due to a chaotic package on seismic.

There was no history of shallow water flow in the area, hence shallow water flow at the Cambozola well location was considered unlikely.

The pilot hole NO 34/9-U-1 was drilled to TD at 1300m MD. No shallow gas nor shallow water flow were observed while drilling the shallow gas pilot NO 34/9-U-1 and no such observations were seen in NO 34/9-1 S Cambozola. A shallow hazards report can be found in App E.

# 4.3 Stratigraphy

An onsite biostratigraphy study was carried out offshore during drilling from the 14" casing shoe to the TD of the 10 5/8" x 12 1/4" hole. The biostratigraphy was used to identify top Svarte Formation and top Rødby Formation, as well as to identify lower part of the Rødby Formation with appearance of deposits of Albian age.

A more detailed post well biostratigraphy study was carried out and the chronostratigraphic evaluation has been incorporated into Equinor's interpretation. The chronostratigraphic divisions are summarised in Table 4-1.

The lithostratigraphy divisions presented in Table 4-3 are based on cutting descriptions, well log correlation with offset wells, and the lithostratigraphic description of formations and groups from NPD.



Doc. No. 2022-013511

Valid from: Dec 2022 Rev. no.: 0

# 4.3.1 Table of chronostratigraphy

# Table 4-1 Observed chronostratigraphy, biozonation and depth (m MD) with depositional environment

\* Confidence (green=high, yellow=middle, red=low).

| Epoch            | Stage/Substage      | Biozone     | Top<br>(m MD) | Base<br>(m MD) | * | Comments                                                                                      |  |  |  |
|------------------|---------------------|-------------|---------------|----------------|---|-----------------------------------------------------------------------------------------------|--|--|--|
| Late Oligocene   | Chattian            | 14.2        | 1310 CU       | 1310 CU        |   | Top not seen.                                                                                 |  |  |  |
|                  |                     | 14.3        | 1320 CU       | 1430 CU        |   |                                                                                               |  |  |  |
| Early Oligocene  | Rupelian            | 15.1        | 1440 CU       | 1510 CU        |   |                                                                                               |  |  |  |
|                  |                     | 15.2        | 1520 CU       | 1540 CU        |   |                                                                                               |  |  |  |
|                  |                     | 15.4        | 1550 CU       | 1620 CU        |   |                                                                                               |  |  |  |
| Late Eocene      | Priabonian          | 16          | 1630 CU       | 1670 CU        |   |                                                                                               |  |  |  |
| Middle Eocene    | Bartonian           | 17.1 – 17.3 | 1680 CU       | 1710 CU        |   |                                                                                               |  |  |  |
|                  | Lutetian            | 18.1 – 18.2 | 1720 CU       | 1750 CU        |   |                                                                                               |  |  |  |
|                  |                     | 18.3        | 1760 CU       | 1770 CU        |   |                                                                                               |  |  |  |
|                  |                     | 18.4        | 1780 CU       | 1800 CU        |   |                                                                                               |  |  |  |
| Early Eocene     | Ypresian            | 19.1        | 1810 CU       | 1810 CU        |   |                                                                                               |  |  |  |
|                  |                     | 19.2        | 1820 CU       | 1820 CU        |   |                                                                                               |  |  |  |
|                  |                     | 19.3        | 1830 CU       | 1830 CU        |   |                                                                                               |  |  |  |
|                  |                     | 19.4        | 1840 CU       | 1860 CU        |   |                                                                                               |  |  |  |
|                  |                     | 19.6        | 1870 CU       | 1910 CU        |   |                                                                                               |  |  |  |
|                  |                     | 19.7        | 1920 CU       | 1920 CU        |   |                                                                                               |  |  |  |
| Indeterminate    | Indeterminate       | Unassigned  | 1930 CU       | 1930 CU        |   | Sample contains micro & paly assemblages typical of Lista Fm. (sample possibly mis-labelled). |  |  |  |
| Late Paleocene   | Thanetian           | 20.1        | 1940 CU       | 1940 CU        |   | Good Sele Fm. palynoflora.                                                                    |  |  |  |
|                  |                     | 20.2        | 1950 CU       | 1950 CU        |   | Probable top to <i>in situ</i> Lista Fm. assemblages.                                         |  |  |  |
|                  |                     | 20.3        | 1960 CU       | 2000 CU        |   |                                                                                               |  |  |  |
| Middle Paleocene | Selandian           | 21.1        | 2010 CU       | 2020 CU        |   |                                                                                               |  |  |  |
|                  |                     | 21.2        | 2030 CU       | 2030 CU        |   |                                                                                               |  |  |  |
|                  |                     | 21.3 – 21.4 | 2040 CU       | 2050 CU        |   |                                                                                               |  |  |  |
| Early Paleocene  | Danian              | 22.1        | 2060 CU       | 2060 CU        |   |                                                                                               |  |  |  |
| Early Falcocone  |                     | 22.2        | 2070 CU       | 2080 CU        |   |                                                                                               |  |  |  |
| Unconformity     |                     |             |               |                |   |                                                                                               |  |  |  |
| Late Cretaceous  | Late Maastrichtian  | 23.1        | 2090 CU       | 2100 CU        |   |                                                                                               |  |  |  |
|                  |                     | 23.2        | 2110 CU       | 2170 CU        |   |                                                                                               |  |  |  |
|                  | Early Maastrichtian | 23.3 – 23.4 | 2180 CU       | 2340 CU        |   |                                                                                               |  |  |  |
|                  | Late Campanian      | 24.1        | 2360 CU       | 2420 CU        |   |                                                                                               |  |  |  |
|                  | Middle Campanian    | 24.2        | 2430 CU       | 2510 CU        |   |                                                                                               |  |  |  |

Classification: Restricted Status: Final www.equinor.com



Page 36 of 196

Final well report, Pilot well NO 34/9-U-1 Doc. No. 2022-013511

and Exploration well NO 34/9-1 S Cambozola Valid from: Dec 2022 Rev. no.: 0

|                  |                                    | 24.2        | 2522.011 | 2702 011 |  |                                                                     |  |  |
|------------------|------------------------------------|-------------|----------|----------|--|---------------------------------------------------------------------|--|--|
|                  | Early Campanian                    | 24.3        | 2520 CU  | 2780 CU  |  |                                                                     |  |  |
| Late Cretaceous  | Late – Middle<br>Santonian         | 25.1 – 25.2 | 2790 CU  | 2900 CU  |  |                                                                     |  |  |
|                  | Early Santonian                    | 25.3        | 2910 CU  | 2990 CU  |  |                                                                     |  |  |
|                  | Late Coniacian                     | 26.1        | 3000 CU  | 3170 CU  |  |                                                                     |  |  |
|                  | Middle Coniacian                   | 26.2        | 3180 CU  | 3230 CU  |  |                                                                     |  |  |
|                  | Early Coniacian –<br>Late Turonian | 26.3 – 27.1 | 3240 CU  | 3600 CU  |  | Relatively poor recovery & absence of age-diagnostic events.        |  |  |
|                  | Late Turonian                      | 27.1        | 3610 CU  | 3670 CU  |  | Age based on non-standard events.                                   |  |  |
|                  | Middle Turonian                    | 27.2        | 3700 CU  | 3770 CU  |  |                                                                     |  |  |
|                  | Early Turonian                     | 27.3        | 3790 CU  | 3940 CU  |  |                                                                     |  |  |
|                  | Late Cenomanian                    | 28.1        | 3950 CU  | 4070 CU  |  |                                                                     |  |  |
|                  | Middle Cenomanian                  | 28.2        | 4080 CU  | 4160 CU  |  |                                                                     |  |  |
|                  | Early Cenomanian                   | 28.3        | 4170 CU  | 4210 CU  |  |                                                                     |  |  |
| Early Cretaceous | Late Albian                        | 29.1        | 4230 CU  | 4260 CU  |  | Top defined on poor event (possible specimen of <i>A. grande</i> ). |  |  |
|                  |                                    | 29.2        | 4270 CU  | 4325 CU  |  |                                                                     |  |  |
|                  | Middle Albian                      | 29.3        | 4331 CU  | 4403 CU  |  |                                                                     |  |  |
|                  | ?Unconformity                      |             |          |          |  |                                                                     |  |  |
|                  | Early Albian – Late<br>Aptian      | 29.4 – 30.1 | 4412 CU  | 4455 CU  |  | Poor <i>in situ</i> recovery at base of interval. Base not seen.    |  |  |



Doc. No. 2022-013511

Valid from: Dec 2022 Rev. no.: 0

# 4.3.2 Table of lithostratigraphic

Table 4-2 Prognosis vs observed lithostratigraphy, NO 34/9-U-1

|           |           |        | PR     | OGNOSIS           |         |        | OBSERVE | D         | Difference |
|-----------|-----------|--------|--------|-------------------|---------|--------|---------|-----------|------------|
| Group     | Formation | Depth  | Depth  | Depth Uncertainty |         | Depth  | Depth   | Thickness | Fm tops    |
|           |           | (m MD) | (m TVD | +/- (m TVD)       | (m TVD) | (m MD) | (m TVD  | (m TVD)   | (m TVD)    |
|           |           |        | RKB)   |                   |         |        | RKB)    |           |            |
| Nordland  | Naust     | 412    | 412    | 1                 |         | 412    | 412     |           |            |
|           | Utsira    | 1032   | 1032   | 30                | 20      | 1019   | 1019    | 392       | -13        |
| Hordaland |           | 1052   | 1052   | 30                | 828     | 1058   | 1058    | 819       | +6         |
| TD        |           | 1300   | 1300   |                   |         | 1300   | 1299.6  |           |            |

Table 4-3 Prognosis vs observed lithostratigraphy, NO 34/9-1 S Cambozola

|           |            |                 | PR                      | OGNOSIS                    |                      |                    | OBSERVE                 | ĒD .                 | Difference         |
|-----------|------------|-----------------|-------------------------|----------------------------|----------------------|--------------------|-------------------------|----------------------|--------------------|
| Group     | Formation  | Depth<br>(m MD) | Depth<br>(m TVD<br>RKB) | Uncertainty<br>+/- (m TVD) | Thickness<br>(m TVD) | Depth<br>(m<br>MD) | Depth<br>(m TVD<br>RKB) | Thickness<br>(m TVD) | Fm tops<br>(m TVD) |
| Nordland  | Naust      | 412             | 412                     | 1                          |                      | 412                | 412                     |                      |                    |
|           | Utsira     | 1032            | 1032                    | 30                         | 20                   | 1019               | 1019                    | 392                  | -13                |
| Hordaland |            | 1052            | 1052                    | 30                         | 828                  | 1058               | 1058                    | 819                  | +6                 |
|           | Balder     | 1880            | 1880                    | 30                         | 68                   | 1877               | 1877                    | 36                   | -3                 |
|           | Sele       | np              |                         |                            |                      | 1913               | 1913                    | 38                   |                    |
| Rogaland  | Lista      | 1948            | 1948                    | 30                         | 137                  | 1951               | 1951                    | 82                   | +3                 |
|           | Våle       | np              |                         |                            |                      | 2033               | 2033                    | 56                   |                    |
|           | Jorsalfare | 2085            | 2085                    | 30                         | 255                  | 2089               | 2089                    | 242                  | +4                 |
|           | Kyrre      | 2341            | 2340                    | 40                         | 1170                 | 2332               | 2331                    | 1228                 | -9                 |
| Shetland  | Tryggvason | 3531            | 3510                    | 50                         | 330                  | 3581               | 3559                    | 379                  | +49                |
|           | Blodøks    | np              |                         |                            |                      | 3960               | 3931                    | 15                   |                    |
|           | Svarte     | 3867            | 3840                    | 50                         | 480                  | 3975               | 3946                    | 250                  | +106               |
|           | Rødby      | np              |                         |                            |                      | 4225               | 4193                    | 180                  |                    |
| Cromer    | Sola       | 4352            | 4320                    | 50                         | 70                   | 4405               | 4373                    |                      | +53                |
| Knoll     | Reservoir  | 4422            | 4390                    | 75                         | 100                  | np                 |                         |                      |                    |
|           | Åsgard     | 4522            | 4490                    | 100                        |                      | np                 |                         |                      |                    |
| TD        |            | 4572            | 4540                    |                            |                      | 4455               | 4422.7                  |                      |                    |



Doc. No. 2022-013511

Valid from: Dec 2022 Rev. no.: 0

# 4.4 Lithostratigraphic description

The lithological description of the Cambozola well is based on cuttings descriptions and log interpretations. See Figure 4-2 for an overview. Extended sample descriptions can be found in App D and in the Completion Log (in Enclosures).

Page 38 of 196



Doc. No. 2022-013511

Valid from: Dec 2022 Rev. no.: 0

Date: Cambozola **Lithological Description Final** 22 okt 2022 RKB: 30.0m NO 34/9-1 S Made By: Revision: Water Depth: 382.0m Cambozola PL1049 M. Vanhatalo Stratigraphy Stratigraphic Tops Lithological Descriptions Casing m MD RKB Depth m MD RKB Formation Depth m MD/m TVD RKB System Series Group 400 Naust 412m / 412m 500 600 Nordland Naust 700 Nordland Group: Returns to seabed. Lithology based on log interpretation. The group comprises of claystone with a few thin beds of sandstone 800 900 1000 Utsira 1019m / 1019m Hordaland undiff. 1058m / 1058m Utsira Formation: Sandstone with a few beds of claystone 1100 1200 20° 1287.0m Hordaland undiff 1300 Claystone with a few distict beds of sandstone. The claystone is dark grey to olive black, firm, non calcareous, silty grading to siltstone. The sandstone is brownish grey, very fine to fine, rarely medium, subangula be subrounded, moderately sorted, non calcareous. Traces of glauconitro Hordaland ŀ 1400 Olgocene Early 1500 1600 1700 Escana Nidda 1800 Rogaland Group: Rogaland Group:
Comprises of the Balder, Sele, Lista and Våle formations. The group consists mainly of claystone, with some tuffaceous material in the Balder Formation. Thin beds of sandstone and limestone are observed in the lower part of the Lista Formation. The sand consist mainly of fine loose quartz grains with associated calcareous matrix. The Våle Formation consists mainly of claystone with thin sandstone and limestone citingers. Soone Early 1900 2000 Våle 2033m / 2033m 2100 nestone stringers 2200 2300 Kyrre 2332m / 2331m Jorsalfare and Kyrre formations 2400 Journalist and rypic infinitions. These formations are dominated by massive claystone with some thin beds of limestone. The claystone is dark grey to greenish grey, calcareous and sitly. In the lower part of the Kyrre Formation some traces of very fine to fine grained sandstone are observed. 2500 2600 2700 2800 Kyrre 2900 Cretaceous Late 3000 Shetland 3100 3200 Cretaceous 3300 14\* 3450.0m 3400 rryggvason normation: Comprises of claystone with frequent thin beds of limstone. The lower part of the formation consists of interbedded claystone, limestone and fine grained sandstone 3500 Tryggvason 3581m / 3559m 3600 Tryggvason 3700 Blodøks Formation: Consists mainly of claystone. 3800 Svarte Formation: Overre Formation:
The formation is dominated by dark grey to olive black, calcareous claystone with thin stringers/ beds of limestone. The limestone beds are most frequent in the lower part of the formation. The limestone is brownish grey, firm and argillaceous 3900 Blodøks 3980m / 3931m Svarte 3975m / 3946m 4000 Svarte 4100 Rødby Formation: Radby Formation:
Consists of olive black to greyish brown claystone, calcareous and partly gradiing to marl. Thin beds of limestone are present in the whole formation. The limestone is olive grey, moderately hard and partly argillaceous.
Sola Formation: 4200 Rødby 4225m / 4193m Rødby retacecus Early 4300 4400 Sola 4405m / 4373m Consists of claystone, siltstone with some traces of sand. The "reservoir" mainly consist of siltstone. 4500

Figure 4-2 Lithological description chart, NO 34/9-1 S Cambozola



Doc. No. 2022-013511

Valid from: Dec 2022 Rev. no.: 0

#### 4.5 **Hydrocarbon indications**

Hydrocarbon indications in well NO 34/9-1 S were limited to drilling gas. No hydrocarbon shows were seen.

Throughout the 17 ½" section the drilling gas levels were fairly constant and quite low, with gas values between 0.1% and 1.2% without any gas peaks within the Hordaland and Rogaland groups or the upper part of Shetland Group.

Gas readings remained low down to the lower part of the 12 1/4"x 13 3/8" section in the Shetland Group where a slight increase in gas level was observed. Some gas peaks were seen in the Tryggvason Formation with the highest formation gas peak reading 3.8% at 3884m MD.

The gas levels were within the similar range throughout the 10 5/8" x 12 1/4" section with the highest formation gas peak recorded to 4.84% at 4132m MD in the Svarte Formation.

The formation gas readings throughout the 8 1/2" and 6" sections fluctuated on relative low values; however several peaks were seen resulting from connection gas and pumps-off gas. Resistivity logs did not indicate any sign of hydrocarbons in this section, and no permeable zones were encountered. No shows were observed above the OBM.

Hydrocarbon indications and gas peaks are presented in Table 4-4 to Table 4-7 and in Figure 4-3.

www.equinor.com



Page 41 of 196

Final well report, Pilot well NO 34/9-U-1 Doc. No. 2022-013511

and Exploration well NO 34/9-1 S Cambozola Valid from: Dec 2022 Rev. no.: 0

# Table 4-4 Gas peaks 12 1/4" x 13 1/2" section, NO 34/9-1 S Cambozola

| Depth<br>(m<br>MD) | Depth<br>(m<br>TVD<br>RKB) | BG<br>(%) | TG<br>(%) | C1<br>(ppm) | C2<br>(ppm) | C3<br>(ppm) | iC4<br>(ppm) | nC4<br>(ppm) | iC5<br>(ppm) | nC5<br>(ppm) | Description    |
|--------------------|----------------------------|-----------|-----------|-------------|-------------|-------------|--------------|--------------|--------------|--------------|----------------|
| 3755               | 3729.5                     | 0.5       | 1.6       | 10327       | 408         | 134         | 8            | 27           | 4            | 5            | Formation gas  |
| 3884               | 3856.3                     | 0.8       | 3.8       | 25550       | 992         | 312         | 31           | 61           | 8            | 13           | Formation gas  |
| 3936               | 3907.4                     | 1.5       | 3.05      | 20251       | 1576        | 555         | 25           | 100          | 8            | 16           | Connection gas |



Page 42 of 196

Final well report, Pilot well NO 34/9-U-1

and Exploration well NO 34/9-1 S Cambozola

Doc. No. 2022-013511

Valid from: Dec 2022 Rev. no.: 0

# Table 4-5 Gas peaks 10 5/8" x 12 1/4" section, NO 34/9-1 S Cambozola

| Depth<br>(m MD) | Depth<br>(m<br>TVD<br>RKB) | BG<br>(%) | TG<br>(%) | C1<br>(ppm) | C2<br>(ppm) | C3<br>(ppm) | iC4<br>(ppm) | nC4<br>(ppm) | iC5<br>(ppm) | nC5<br>(ppm) | Description                    |  |
|-----------------|----------------------------|-----------|-----------|-------------|-------------|-------------|--------------|--------------|--------------|--------------|--------------------------------|--|
| 3993            | 3963                       | -         | 0.20      | 1506        | 35          | 7           | 2            | 0            | 0            | 0            | Trip gas                       |  |
| 3997            | 3967                       | 0.07      | 0.48      | 3322        | 90          | 24          | 3            | 2            | 0            | 0            | BU before FIT                  |  |
| 4027.7          | 3997.5                     | 0.19      | 0.63      | 4627        | 110         | 29          | 4            | 3            | 1            | 1            | Formation gas                  |  |
| 4046            | 4015.4                     | 0.35      | 0.92      | 5638        | 550         | 168         | 4            | 21           | 3            | 1            | Formation gas                  |  |
| 4100            | 4068.6                     | 0.75      | 1.42      | 9545        | 562         | 212         | 6            | 52           | 3            | 3            | Pumps-off gas                  |  |
| 4107            | 4075.5                     | 0.95      | 2.17      | 14829       | 650         | 260         | 10           | 49           | 3            | 6            | Formation gas                  |  |
| 4120            | 4088.3                     | 1.01      | 1.64      | 11202       | 586         | 235         | 8            | 45           | 0            | 9            | Formation gas                  |  |
| 4122            | 4090.3                     | 0.84      | 1.52      | 10457       | 316         | 136         | 2            | 41           | 8            | 0            | Connection                     |  |
| 4125            | 4093.3                     | 0.86      | 2.31      | 15388       | 644         | 245         | 11           | 47           | 13           | 0            | Formation gas                  |  |
| 4132            | 4100.2                     | 1.50      | 4.84      | 33991       | 1119        | 388         | 20           | 70           | 6            | 8            | Formation gas                  |  |
| 4174.5          | 4142.4                     | 0.80      | 4.06      | 27823       | 1187        | 427         | 20           | 83           | 5            | 17           | Formation gas                  |  |
| 4196            | 4163.8                     | 2.00      | 3.5       | 23635       | 1065        | 376         | 18           | 74           | 5            | 15           | Formation gas                  |  |
| 4197.9          | 4165.6                     | 2.00      | 4.41      | 31764       | 908         | 305         | 17           | 62           | 4            | 16           | Connection gas                 |  |
| 4222.5          | 4190.1                     | 2.05      | 3.73      | 24461       | 1290        | 477         | 24           | 122          | 6            | 20           | Formation gas                  |  |
| 4236.8          | 4204.4                     | 1.80      | 4.21      | 29954       | 928         | 345         | 18           | 77           | 4            | 34           | Connection gas                 |  |
| 4261.2          | 4228.8                     | 2.05      | 3.86      | 26928       | 805         | 323         | 19           | 79           | 6            | 39           | Dummy connection               |  |
| 4266            | 4233.6                     | 3.50      | 4.79      | 32985       | 1481        | 502         | 26           | 100          | 7            | 43           | Formation gas                  |  |
| 4274.7          | 4242.3                     | 2.70      | 5.3       | 38377       | 1067        | 346         | 22           | 77           | 6            | 20           | Connection gas                 |  |
| 4277            | 4244.7                     | 0.32      | 2.24      | 16446       | 374         | 146         | 15           | 47           | 4            | 33           | Pump-off test peak 1           |  |
| 4277            | 4244.7                     | 0.37      | 1.18      | 8027        | 231         | 121         | 13           | 68           | 4            | 21           | Pump-off test peak 2           |  |
| 4314            | 4281.9                     | 2.28      | 6.7       | 50516       | 1255        | 348         | 21           | 65           | 6            | 17           | Connection gas                 |  |
| 4322            | 4289.9                     | 0.55      | 2.20      | 15723       | 478         | 188         | 14           | 48           | 4            | 37           | Dummy connection               |  |
| 4322            | 4289.9                     | 0.43      | 2.20      | 15749       | 378         | 131         | 11           | 33           | 3            | 24           | Conn gas - R/B stand           |  |
| 4322            | 4289.9                     | 0.43      | 2.02      | 13825       | 534         | 193         | 11           | 43           | 7            | 26           | Conn gas - drop ball           |  |
| 4322            | 4289.9                     | 0.63      | 4.73      | 36042       | 951         | 295         | 16           | 57           | 3            | 32           | Conn gas - reaming             |  |
| 4322            | 4289.9                     | 0.28      | 3.53      | 26193       | 545         | 171         | 15           | 40           | 4            | 30           | Conn gas - circ stop           |  |
| 4322            | 4289.9                     | 0.17      | 2.75      | 20816       | 383         | 79          | 10           | 11           | 4            | 5            | Conn gas - reamer              |  |
| 4322            | 4289.9                     | 0.13      | 0.88      | 6184        | 122         | 33          | 5            | 6            | 3            | 9            | Conn gas – 1st ESD             |  |
| 4322            | 4289.9                     | 0.13      | 0.55      | 3666        | 66          | 18          | 4            | 5            | 3            | 3            | Conn gas - 2 <sup>nd</sup> ESD |  |
| 4322            | 4289.9                     | 0.13      | 1.03      | 7345        | 130         | 29          | 6            | 4            | 3            | 3            | Conn gas - flush K&C           |  |
| 4322            | 4289.9                     | 0.10      | 1.73      | 12708       | 245         | 56          | 8            | 7            | 4            | 6            | Pump off - Take ESD            |  |
| 4322            | 4289.9                     | 0.10      | 0.85      | 6133        | 116         | 27          | 6            | 4            | 3            | 5            | Pump off - Take ESD            |  |
| 4322            | 4289.9                     | 0.10      | 1.25      | 8945        | 171         | 40          | 7            | 5            | 1            | 3            | Pump off - Take ESD            |  |
| 4322            | 4289.9                     | 0.10      | 3.40      | 25476       | 513         | 116         | 9            | 13           | 2            | 5            | Short trip                     |  |



Page 43 of 196

Final well report, Pilot well NO 34/9-U-1

and Exploration well NO 34/9-1 S Cambozola

Doc. No. 2022-013511

Valid from: Dec 2022 Rev. no.: 0

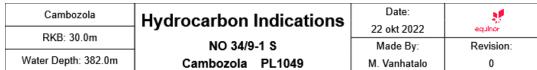
Table 4-6 Gas peaks 8 ½" section, NO 34/9-1 S Cambozola

| Depth<br>(m MD) | Depth<br>(m<br>TVD<br>RKB) | BG<br>(%) | TG<br>(%) | C1<br>(ppm) | C2<br>(ppm) | C3<br>(ppm) | iC4<br>(ppm) | nC4<br>(ppm) | iC5<br>(ppm | nC5<br>(ppm) | Description                  |
|-----------------|----------------------------|-----------|-----------|-------------|-------------|-------------|--------------|--------------|-------------|--------------|------------------------------|
| 4280            | 4247.0                     | 0.29      | 2.95      | 22128       | 388         | 29          | 4            | 1            | 0           | 1            | Drilling shoe, inside casing |
| 4300            | 4267.0                     | 0.10      | 11.97     | 86462       | 1331        | 107         | 10           | 5            | 3           | 1            | pumps off, depth check       |
| 4311            | 4278.0                     | 0.18      | 2.03      | 15221       | 278         | 22          | 3            | 1            | 0           | 1            | Red. flow due to SPP spike   |
| 4311            | 4278.0                     | 0.18      | 1.68      | 12416       | 240         | 19          | 2            | 1            | 0           | 2            | From rathole                 |
| 4315            | 4282.0                     | 0.38      | 2.70      | 20314       | 330         | 28          | 4            | 1            | 1           | 2            | From rathole                 |
| 4315            | 4283.0                     | 0.38      | 2.72      | 20273       | 345         | 31          | 4            | 2            | 0           | 1            | From rathole                 |
| 4318            | 4767.0                     | 0.38      | 6.60      | 50509       | 832         | 64          | 9            | 2            | 1           | 3            | Circ. B/U after FIT *(Trip)  |
| 4333            | 4300.6                     | 0.48      | 5.36      | 39263       | 677         | 53          | 7            | 2            | 0           | 2            | Trip Gas                     |
| 4336            | 4304                       | 0.66      | 6.67      | 50716       | 900         | 70          | 9            | 3            | 0           | 1            | Connection Gas               |
| 4367            | 4335.1                     | 0.88      | 12.45     | 98482       | 1736        | 111         | 16           | 5            | 0           | 1            | Pump off flowcheck           |
| 4367            | 4335.1                     | 0.6       | 9.39      | 72860       | 1210        | 80          | 12           | 3            | 0           | 1            | Circ B/U after test FIT      |
| 4190            | 4157.8                     | 0.3       | 2.00      | 15198       | 243         | 18          | 2            | 1            | 1           | 1            | Pump off gas                 |
| 4190            | 4157.8                     | 0.3       | 1.87      | 14012       | 259         | 21          | 3            | 1            | 0           | 2            | Pump off gas                 |
| 4364            | 4331.8                     | 0.43      | 23.89     | 189185      | 3686        | 230         | 33           | 11           | 1           | 3            | Pump off gas                 |
| 175             | 175                        | 0.43      | 4.49      | 33213       | 587         | 43          | 4            | 2            | 0           | 2            | Form gas                     |
| 4349            | 4316.4                     | 0.43      | 23.06     | 169498      | 8039        | 601         | 54           | 22           | 3           | 3            | Pump off - R/B drill stand   |
| 4349            | 4316.4                     | 0.43      | 5.06      | 35827       | 1210        | 81          | 3            | 2            | 2           | 2            | Pump off - flowcheck         |
| 241             | 241                        | 0.43      | 3.09      | 22469       | 369         | 25          | 3            | 1            | 0           | 2            | Trip gas                     |
| 4342            | 4309.6                     | 0.43      | 11.85     | 93528       | 2779        | 175         | 21           | 7            | 3           | 3            | Form gas                     |
| 4342            | 4309.6                     | 0.43      | 6.25      | 45395       | 777         | 53          | 5            | 2            | 0           | 2            | Trip gas                     |
| 4366            | 4333.6                     | 0         | 4.35      | 32176       | 702         | 53          | 8            | 3            | 1           | 2            | Pump off                     |
| 4366            | 4333.6                     | 0         | 3.83      | 28459       | 617         | 45          | 7            | 2            | 1           | 2            | Pump off                     |



Doc. No. 2022-013511

Valid from: Dec 2022 Rev. no.: 0


# Table 4-7 Gas peaks 6" section, NO 34/9-1 S Cambozola

| Depth<br>(m<br>MD) | Depth<br>(m<br>TVD<br>RKB) | BG<br>(%) | TG<br>(%) | C1<br>(ppm) | C2<br>(ppm) | C3<br>(ppm) | iC4<br>(ppm) | nC4<br>(ppm) | iC5<br>(ppm) | nC5<br>(ppm) | Description                                            |
|--------------------|----------------------------|-----------|-----------|-------------|-------------|-------------|--------------|--------------|--------------|--------------|--------------------------------------------------------|
| 4369.8             | 4337.4                     | 0.44      | 2.77      | 20975       | 341         | 14          | 1            | 1            | 1            | 2            | Gas from using jar low flow                            |
| 4369.8             | 4337.4                     | 0.1       | 4.02      | 30849       | 505         | 21          | 2            | 1            | 1            | 2            | Gas from Shoe                                          |
| 4370               | 4337.6                     | 0.15      | 9.68      | 76240       | 1768        | 70          | 11           | 2            | 1            | 2            | Pump Off gas<br>(FIT)                                  |
| 4376.4             | 4344.0                     | 0.1       | 2.71      | 20498       | 381         | 18          | 2            | 1            | 2            | 1            | Pump Off gas                                           |
| 4377.5             | 4345.6                     | 0.05      | 4.55      | 33882       | 566         | 25          | 2            | 1            | 0            | 0            | Pumps off gas<br>(Dummy<br>Connection)                 |
| 4385               | 4352.6                     | 0.04      | 6.52      | 49942       | 842         | 35          | 7            | 0            | 0            | 1            | Pumps Off Gas<br>(Flowcheck<br>before<br>displacement) |
| 4385.7             | 4343.3                     | 0.02      | 1.29      | 9989        | 161         | 8           | 1            | 1            | 0            | 1            | Pumps off gas<br>after flowcheck<br>03:45              |
| 4394.1             | 4361.7                     | 0.05      | 1.97      | 15496       | 241         | 10          | 1            | 0            | 0            | 1            | Pumps off gas<br>after flowcheck<br>11:45              |
| 4397.9             | 4365.5                     | 0.07      | 1.54      | 11939       | 189         | 8           | 1            | 0            | 0            | 1            | Pumps off gas<br>after flowcheck<br>17:20              |
| 4403               | 4371.5                     | 0.23      | 1.3       | 10103       | 167         | 9           | 1            | 0            | 0            | 0            | Pumps off gas<br>after flowcheck<br>00:00              |
| 4407               | 4374.6                     | 0.5       | 1.48      | 11413       | 196         | 11          | 2            | 1            | 1            | 1            | Pumps off gas<br>after flowcheck<br>07:10              |
| 4413               | 4380.6                     | 0.4       | 3.28      | 24902       | 421         | 21          | 4            | 0            | 0            | 1            | Pumps off gas<br>after flowcheck<br>14:20              |
| 4427               | 4394.7                     | 0.4       | 2.11      | 16219       | 295         | 21          | 4            | 1            | 0            | 1            | Pumps off gas<br>after flowcheck<br>22:00              |
| 4427               | 4394.7                     | 0.5       | 0.95      | 7288        | 115         | 8           | 1            | 1            | 0            | 1            | Pumps off Gas<br>after Dummy<br>connection             |
| 4435               | 4404.9                     | 0.6       | 10.17     | 81479       | 1298        | 87          | 13           | 4            | 0            | 2            | Pumps off gas after flowcheck                          |
| 4444               | 4412.1                     | 0.2       | 3.73      | 28390       | 509         | 45          | 6            | 2            | 0            | 0            | Pumps off gas<br>after flowcheck                       |
| 4444               | 4412.1                     | 0.1       | 3.76      | 29351       | 429         | 37          | 4            | 2            | 2            | 1            | Pumps off gas<br>after flowcheck                       |
| 4450               | 4421.7                     | 0.39      | 7.32      | 54978       | 814         | 67          | 7            | 3            | 2            | 1            | Pumps off gas<br>after flowcheck                       |
| 4455               | 4422.7                     | 0.55      | 5.50      | 43168       | 683         | 62          | 6            | 3            | 2            | 0            | Pumps off gas<br>after flowcheck                       |



Doc. No. 2022-013511

Valid from: Dec 2022 Rev. no.: 0



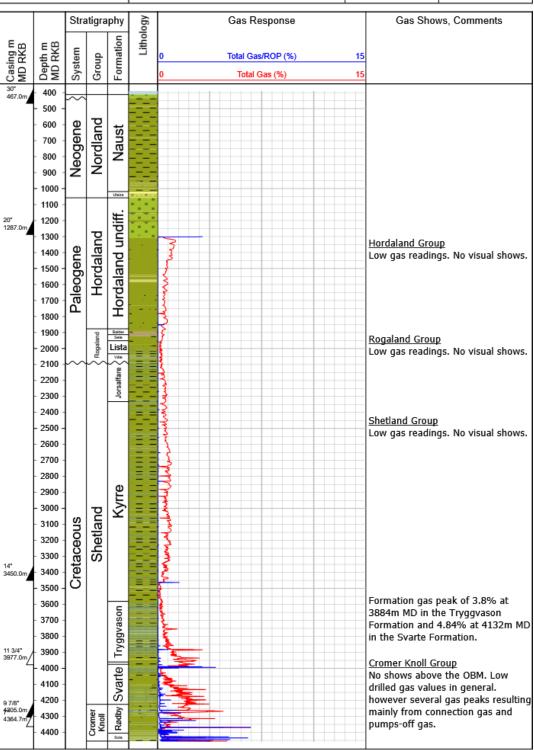



Figure 4-3 Hydrocarbon indication chart, NO 34/9-1 S Cambozola

Page 45 of 196



Doc. No. 2022-013511

Valid from: Dec 2022 Rev. no.: 0

# 4.6 Geophysical results

The formation tops in NO 34/9-1 S came in close to prognosis and within the predrill uncertainty range, with some exceptions. See 4.3.2 for the complete overview of the prognosed vs. actual formation tops. The larger miss-ties for top Tryggvason, top Svarte and top Sola are due to difference in predrill and post drill definition of geological picks. Predrill velocity model was the CGG18M01 PSDM vertical velocity cube. Sonic while drilling was used in the 12 ¼" section, to confirm the velocity model and reduce uncertainty of Top Reservoir to ± 50m TVD. VSP was run to further reduce the uncertainty of Top Reservoir to ± 22m TVD.

A seismic to well tie of NO 34/9-1 S is shown in Figure 4-4. The synthetic seismogram is created directly from the sonic and density well logs. The seismic wavelet used in the synthetic seismogram (Ormsby 1-2-15-38) is based on a statistical extraction from more than 200 traces in both inline and crossline direction from the near stack CGG18M01 PSDM seismic data centred around the borehole at the target level. The wavelet is generated from a 1000ms interval from 3000-4000ms. The check shot time-depth relationship from the VSP is used in the synthetic seismogram but requires a stretch of 10ms from Intra Tryggvason level to prognosed top reservoir to provide an optimal match with the CGG18M01 near stack seismic data shown in the well tie.

The raw VSP data was processed by Schlumberger to corridor stack resulting in a good 3 way tie with frequency recovery up to 80 Hz shown in well tie Figure 4-10. Additional processing was made to image some possible near wellbore fault events that were evident on the 3-component raw data

Overall, the seismic well tie of NO 34/9-1 S is good. Decrease in both velocity and density sets up the strong trough for the predrill Top Reservoir seismic reflector. Density-neutron logs, gamma log and cuttings confirm that this interval consists of mainly shales with some silt and only traces of sand. Some increase in gas was observed. Post well modelling reveals a weak AVO class 3 – negative brightening with offset. This can be due to the slight increase in porosity and gas in the formation.



Doc. No. 2022-013511

Valid from: Dec 2022 Rev. no.: 0

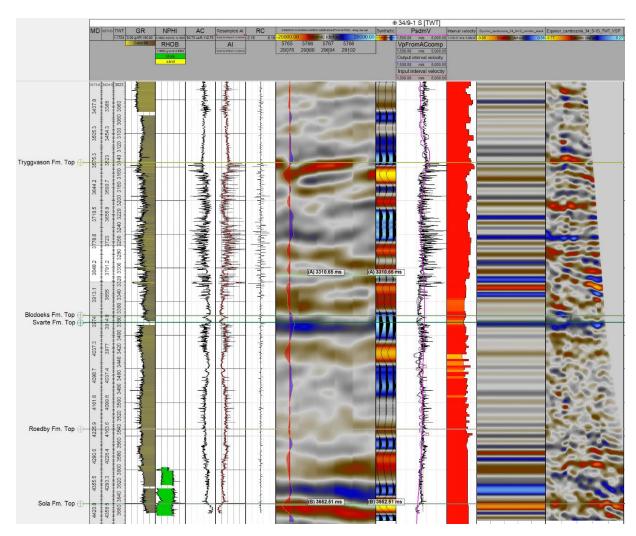



Figure 4-4 Seismic tie to well NO 34/9-1 S

# 4.7 Data acquisition

# 4.7.1 Cuttings and mud samples

Schlumberger (Geoservices) provided mudlogging services including chromatographic gas data collection and cuttings sampling. Cuttings, mud and gas sampling at various intervals are presented in tables below. Advanced mud gas analysis (Flair Flex) was used from 20" casing shoe to TD in this well.

Page 47 of 196



Doc. No. 2022-013511

Valid from: Dec 2022 Rev. no.: 0

Table 4-8 Cuttings and gas sampling, NO 34/9-1 S Cambozola

| Hole section    | Wet cuttings                               | Gas sampling                   |
|-----------------|--------------------------------------------|--------------------------------|
|                 | (5 litre buckets)                          | (Isotubes)                     |
|                 | (0.5 kg bag for biostrat)                  | (2 x 110ml)                    |
| 17 ½"           | 1300m - 3460m                              | Isotube, 2 x 100ml, every 100m |
|                 | 5 litres wet cuttings, every 10m           |                                |
|                 | 0.5kg wet cuttings for biostrat, every 10m |                                |
| 12 ¼" x 13 ½"   | 3460m - 3989m                              | Isotube, 2 x 100ml, every 100m |
|                 | 5 litres wet cuttings, every 10m           |                                |
|                 | 0.5kg wet cuttings for biostrat, every 10m |                                |
| 10 5/8" x 12 ½" | 3989m - 4322m                              | Isotube, 2 x 100ml, every 100m |
|                 | 5 litres wet cuttings, every 10m           |                                |
|                 | 0.5kg wet cuttings for biostrat, every 10m |                                |
| 8 ½"            | 4322m - 4367m                              | Isotube 2 x 100ml, every 21m   |
|                 | 5 litres wet cuttings, every 3 m           |                                |
|                 | 0.5kg wet cuttings for biostrat, every 3 m |                                |
| 6"              | 4367m - 4455m                              | Isotube, 2 x 100ml, every 21m  |
|                 | 5 litres wet cuttings, every 3m            |                                |
|                 | 0.5kg wet cuttings for biostrat, every 3m  |                                |

# Table 4-9 Mud sampling, NO 34/9-1 S Cambozola

| Hole section      | Mud<br>(1 litre bottle)        |
|-------------------|--------------------------------|
| 17 ½"             | 1300m - 3460m                  |
|                   | 1 litre mud sample, every 200m |
| 12 ¼" x 13 ½"     | 3460m - 3989m                  |
|                   | 1 litre mud sample, every 200m |
| 10 5/8" x 12 1⁄4" | 3989m - 4322m                  |
|                   | 1 litre mud sample, every 200m |
| 8 ½"              | 4322m - 4367m                  |
|                   | 1 litre mud sample, every 21m  |
| 6"                | 4367m - 4455m                  |
|                   | 1 litre mud sample, every 21m  |

# 4.7.2 Conventional coring

Classification: Restricted

No conventional coring was performed in this well, as coring was only planned to be performed in discovery case.



Doc. No. 2022-013511

Valid from: Dec 2022 Rev. no.: 0

### 4.7.3 MWD/LWD

Table 4-10 MWD/LWD logging summary, NO 34/9-U-1 and NO 34/9-1 S Cambozola

| Run | Section (in)      | Depth<br>interval<br>(m MD) | Tool combination                     | Remarks             |
|-----|-------------------|-----------------------------|--------------------------------------|---------------------|
|     |                   | (III WID)                   |                                      |                     |
| 1*  | 8 ½"              | 412-1300                    | PowerDrive-ARC6-Tele675              | GR-RES-ECD-DIR      |
| 2   | 26"               | 466.7-1300                  | ROS900- ARC9                         | GR-RES-ECD-DIR      |
| 3   | 17 ½"             | 1300-3460                   | PowerDrive-ROS900-ARC9               | NBGR-GR-RES-ECD-DIR |
| 4   | 12 ¼" x 13 ½"     | 3460-3989                   | PowerDrive-ROS900-ARC9-SonicScope    | NBGR-GR-RES-Sonic-  |
|     |                   |                             |                                      | ECD-DIR             |
| 5   | 10 5/8" x 12 1⁄4" | 3989-4322                   | Powerdrive-TeleScope25-ARCVision825- | GR-RES-ECD-DIR      |
|     |                   |                             | SonicScope                           |                     |
| 6   | 8 ½"              | 4322-4367                   | DV6MT-Tele675-SonicScope6            | GR-RES-DEN-NEU-     |
|     |                   |                             |                                      | Sonic-CAL-ECD-DIR   |
| 7   | 6"                | 4367-4455                   | IMP-ADN4-VPWD                        | GR-RES-NEU-DEN-CAL- |
|     |                   |                             |                                      | ECD-DIR             |

<sup>\*</sup> Pilot hole, well NO 34/9-U-1

# 4.7.4 Wireline logging

Table 4-11 Wireline logging summary, NO 34/9-1 S Cambozola

| Run<br>no. | Section           | Tool<br>combination | Logs            | Depth<br>interval<br>(m MD) | Remarks              |
|------------|-------------------|---------------------|-----------------|-----------------------------|----------------------|
| 1          | 17 ½"             | GR-CBL-IBC          | Cement bond log | 1370-3394                   | Logged 14" casing    |
| 2          | 12 ¼" x 13 ½"     | GR-CBL-IBC          | Cement bond log | 3881-4257                   | Logged 9 7/8" casing |
| 3          | 10 5/8" x 12 1/4" | VSI4-GR             | Look ahead VSP  | 935-4285                    |                      |
| 4          | 6"                | GR-PPC-MSIP         | Sonic P&S data  | 3970-4455.7                 | Logged inside casing |

# 4.7.5 Data quality

### 4.7.5.1 MWD/LWD

All realtime data and memory data were of good quality. Memory data proved no missing data. Some issues with GR and shallow RES sensors reading sand in both 8 ½" pilot hole and in 26" section in main well when pumping Hi-Vis sweeps.

# 4.7.5.2 Mudlogging

No major issues or problems regarding gas or volumes monitoring. No major issues with transmitting realtime data. Some issues with both chromatograph and gas trap failing especially during drilling of the 6" section. No missed gas data.

No issues with Flair data monitoring and recording.

Classification: Restricted Status: Final www.equinor.com



Doc. No. 2022-013511

Valid from: Dec 2022 Rev. no.: 0

### 4.7.5.3 Wireline

Four logging runs were performed in the main well. Two cement bond logs, one lookahead VSP and one sonic log. Data quality is largely of good quality.

# 4.8 Formation pressure

The pressure prognosis for the Cambozola well was based on data from the nearby wells, where the most relevant reference wells were the NO 34/12-1 Afrodite and wells on the Kvitebjørn field.

The pore pressure gradient is believed to follow prognosis and being close to hydrostatic down to mid-Hordaland, where the Hordaland Group is expected to be sand free (~1700m TVD RKB), from there the pore pressure gradient is based on the Kvitebjørn field model. The Lista Formation had a potential high case pressure based on pressure measurements in NO 34/11-A-16 on Kvitebjørn. However, no confirmation during drilling indicates that we have drilled with a mud weight close to pore pressure, which gives a higher confidence in the most expected pore pressure curve. From top Tryggvason Formation the pore pressure gradient is expected to increase towards the planned top rservoir, however, exactly at which depth this pressure gradient increase starts and how fast it increases is uncertain, but it is estimated to increase with approximately 42bar/100m. The sonic and resistivity data gathered while drilling indicates that it is likely that the pressure follow a similar gradient as prognosed through Tryggvason and into the Svarte Formations, where it has a flattening or decreasing trend towards Top Rødby Formation, where the pore pressure gradient has a rapid increase towards the Sola Formation. Towards TD of the well the pump-off events seems to indicate that it is likely that the mud column is close to being in balance with or just above the pore pressure of the formation.



Doc. No. 2022-013511

Valid from: Dec 2022 Rev. no.: 0

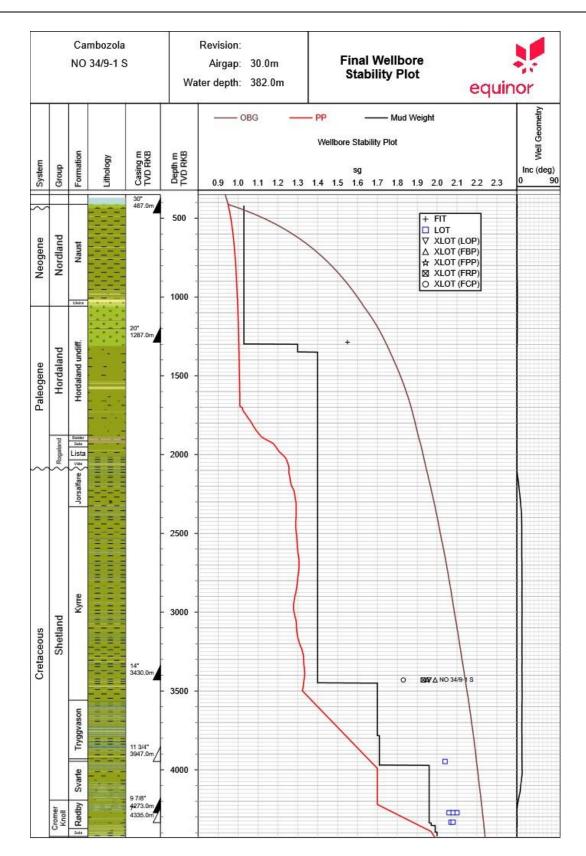



Figure 4-5 Final Wellbore Stability plot, NO 34/9-U-1 and NO 34/9-1 S Cambozola

Classification: Restricted Status: Final www.equinor.com



www.equinor.com

Final well report,
Pilot well NO 34/9-U-1
and Exploration well NO 34/9-1 S Cambozola

Doc. No. 2022-013511

Valid from: Dec 2022 Rev. no.: 0

# 4.9 Formation integrity

Two FITs were performed in the Cambozola well. One below the 20" casing shoe and one below the 11 3/4" liner shoe. An XLOT (Figure 4-6) was taken below the 14" casing shoe, and two LOTs were taken below the 9 7/8" casing and 7" liner. The results for all these tests are summarized in Table 4-12.

Table 4-12 Summary of FIT/LOT/XLOT data in well NO 34/9-1 S Cambozola

| Test | Casing  | Туре   | Depth  | Depth TVD | FIT    | LOP    | FBP    | FCP    | FRP    | FPP    |
|------|---------|--------|--------|-----------|--------|--------|--------|--------|--------|--------|
| type |         |        | MD (m) | RKB (m)   | (g/cc) | (g/cc) | (g/cc) | (g/cc) | (g/cc) | (g/cc) |
| FIT  | 20"     | Casing | 1286.8 | 1286.7    | 1.55   |        |        |        |        |        |
| XLOT | 14"     | Casing | 3449.6 | 3429.6    | -      | 1.96   | 1.99   | 1.83   | 1.94   | 1.95   |
| FIT  | 11 3/4" | Liner  | 3976.5 | 3947.3    | 2.04   |        |        |        |        |        |
| LOT  | 9 7/8"  | Casing | 4304.9 | 4272.6    | -      | 2.08   |        |        |        |        |
| LOT  | 7"      | Liner  | 4364.7 | 4332.4    | -      | 2.06   |        |        |        |        |

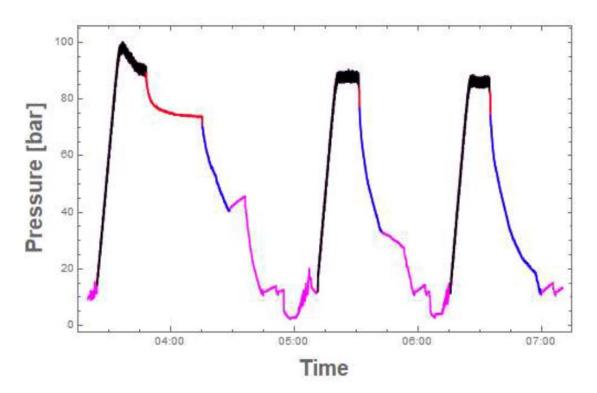



Figure 4-6 Time versus pressure during the XLOT in NO 34/9-1 S (Cambozola) showing cement unit data. Pump-in (black); Shut-in (red); Flowback (blue); Rebound/Other (magenta).

# 4.9.1 Reservoir pressure summary

No pressure measurements were taken in NO 34/9-1 S Cambozola well.

# 4.10 Reservoir fluid sampling

Classification: Restricted

No sampling was performed in NO 34/9-1 S Cambozola well.

Status: Final



Doc. No. 2022-013511

Valid from: Dec 2022 Rev. no.: 0

# 4.11 Formation temperature

The final formation temperature plot is based on what was prognosed prior to drilling the well. As only one wireline run was performed in two different section a Horner correction cannot be made.

For the final plot a temperature gradient of 3.8°C/100m from seabed down to TD is used. The seabed temperature is assumed to be 4°C based on reference wells. This gives a temperature of 156°C at TD of 4423m TVD RKB. See Figure 4-7.

Page 53 of 196



Doc. No. 2022-013511

Valid from: Dec 2022 Rev. no.: 0

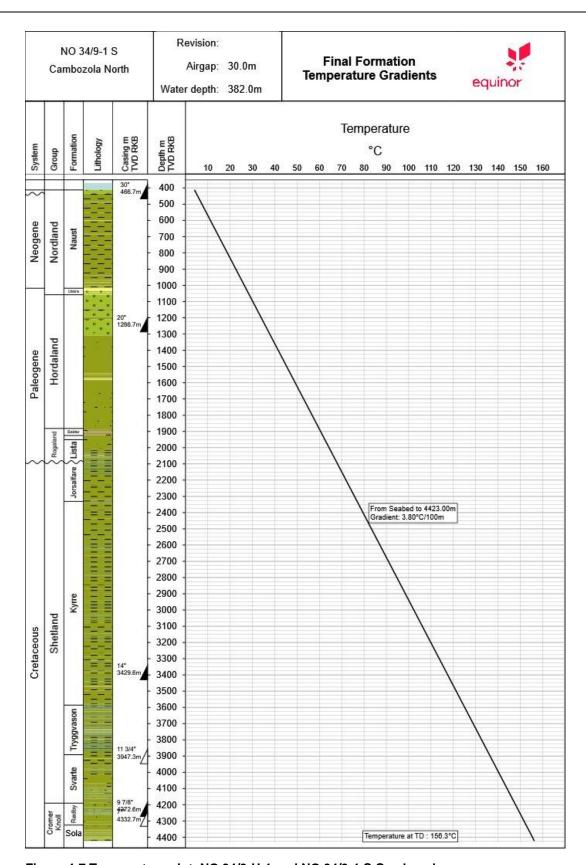



Figure 4-7 Temperature plot, NO 34/9-U-1 and NO 34/9-1 S Cambozola

Classification: Restricted Status: Final www.equinor.com



Doc. No. 2022-013511

Valid from: Dec 2022 Rev. no.: 0

# 4.12 Experiences / recommendations

See Chapter 3.

Flair data provided an overall better control of gas in returns and provided a continuous hydrocarbon indication log. In addition, Flair data increased the understanding of the hydrocarbon system by separating gas response vs. formation gas: With Flair data it was easier to monitor the gas in/gas out levels and to evaluate the different gas responses and to have control of recycled gas.



Doc. No. 2022-013511

Valid from: Dec 2022 Rev. no.: 0

# 5 Drilling operations report

### 5.1 NO 34/9-1 S, Move to Location (09.Apr.2022 00:00)

**START:** 09.Apr.2022 00:00 mMD **END** : 09.Apr.2022 08:20 0 mMD

### **OBJECTIVE**

Move from Kveikje n'Roll to Cambozola

#### **SUMMARY**

Moving to NO 34/9-1 Cambozola from the previous location (NO 35/10-8 S Kveikje N' Roll). Performed DP trails, installed transponders and marker buoys.

### 5.2 NO 34/9-1 S, Pre-Spud (09.Apr.2022 08:20)

**START:** 09.Apr.2022 08:20 414 mMD **END** : 09.Apr.2022 14:35 401 mMD

#### **SUMMARY**

Ran 36" conductor to seabed in Main and hang off.

### 5.3 NO 34/9-U-1 (Pilot Hole), Pre-Spud (09.Apr.2022 17:40)

**START:** 09.Apr.2022 17:40 0 mMD **END** : 09.Apr.2022 14:35 414 mMD

#### **SUMMARY**

M/U and ran 8 1/2" pilot BHA into sea. Tagged seabed at 414 m.

# 5.4 NO 34/9-U-1 (Pilot Hole), 8 ½" (09.Apr.2022 20:20)

**START:** 09.Apr.2022 20:20 414 mMD **END** : 11.Apr.2022 05:15 1300 mMD

### **OBJECTIVE**

Drill pilot hole beyond identified shallow hazards to investigate for shallow gas and allow for drilling 26" hole to 1300 m.

### **SUMMARY**

Washed down from 414 m to 429 m. Established drilling parameters and drilled 8 ½" pilot hole with sea water and sweeps to 1300 m. Had a stop in drilling at 552 m for 0.92 hrs due to a general alarm. During stop, picked off bottom, circulated and reciprocated string. Drilled to TD at 1300 m.

Pumped hi-vis sweeps and circulated hole clean. Flow checked well for 30 minutes prior to displace well to 1.30 sg KCl displacement mud.



Doc. No. 2022-013511

Valid from: Dec 2022 Rev. no.: 0

# 5.5 NO 34/9-U-1 (Pilot Hole), 8 ½" Permanent P&A (11.Apr.2022 05:15)

**START:** 11.Apr.2022 05:15 1300 mMD **END** : 11.Apr.2022 13:10 1100 mMD

#### SUMMARY

Plugged back pilot hole by setting two balanced cement plugs, from 1300-1100 m and from 1100-900 m

# 5.6 NO 34/9-1 S, 26" x 42" (09.Apr.2022 20:20)

**START:** 09.Apr.2022 14:35 432 mMD **END** : 11.Apr.2022 19:20 467.7 mMD

#### **OBJECTIVE**

Drill 26"x42" hole with hole opener. to allow for 36" conductor casing to be set at sufficient depth.

The 36" conductor shall be the foundation for the well and support the subsequent casing strings and BOP.

#### **SUMMARY**

Drilled 26"x42" hole from 412mRKB (seabed) to 467.7m (tide corrected) in AUX. Encountered boulders.

Struggled to achieve inclination <1deg, had to ream. Inclination survey at 464m was 0.53 deg.

The conductor was run and installed according to plan. Held 36" conductor in place with 20 ton tension while waiting on cement.

#### **BIT RUNS**

This section was drilled with 26" XR+ Milled tooth bit.

At surface the 26" bit and hole opener were graded to 2-1-WT-M-X-I-NO-TD

### **DRILLING FLUID**

Seawater and Hi-vis sweeps.

### **CASING**

36" Conductor, X-56, 553.4#, TSH BlueDock LR ELS couplings

### MWD/BHA

D&I (TruLink)

### **CEMENTING**

The cement job was planned with 300% excess. Due to large crater observed after setting the conductor it was decided to increase excess to 350%. Job went according to plan. Mixed and pumped 61.5 m3 1.70 sg gas cement slurry (Class C neat) with 800 lpm (350% excess).



Doc. No. 2022-013511

Valid from: Dec 2022 Rev. no.: 0

# 5.7 NO 34/9-1 S, 26" (11.Apr.2022 19:20)

**START:** 11.Apr.2022 19:20 467.7 mMD **END** : 18.Apr.2022 04:20 1303 mMD

#### **OBJECTIVE**

Provide integrity for drilling the 17 1/2" section.

Run and install BOP.

#### SUMMARY

Drilled 26" hole to 1300m RKB. Displaced to 1.30 sg Displacement mud. Run and cement 20" casing with C-cement. Plugged nozzles on the 26" bit.

#### **BIT RUNS**

This section was drilled with a 26" XR+MT.

Dull grading after drilling was 1-1-WT-A-E-IN-PN-TD. 2 of the nozzles were plugged with rubber from motor.

#### **DRILLING FLUID**

Seawater and hi-vis sweeps. Displaced well to 1.30 sg KCl mud prior to pull out of hole.

#### **CASING**

20" 133lbs/ft, N-80, TSH ER couplings.

RKB Hanger on 408.40 m - Shoe depth 1286.77 m.

### MWD/BHA

GR-Res (ARC/TruLink)

### **CEMENTING**

Mixed and pumped 102 m3 Lead Slurry and 81m3 Tail Slurry. Slurry designed for shallow water/gas flow.

Original plan was to have 50% annular excess on the Lead Slurry and 100% annular excess on the Tail Slurry. Due to the change in plans for the 36" conductor job. it was decided to adjust the Tail Slurry to 50% annular excess.

# 5.8 NO 34/9-1 S, 17 1/2" (18.Apr.2022 04:20)

**START: 18.Apr.2022 04:20 1303 mMD END :** 25.Apr.2022 08:15 3463 mMD

### **OBJECTIVE**

Provide integrity for drilling the 12 1/4" x 13 1/2" section

### **SUMMARY**

Drilled 17 ½" section from 1303m to section TD at 3460 m with 4200-4700 lpm, 8-19 ton WOB, 160-230 rpm. Max gas reading during drilling was 1.2%.

Circulated well clean at TD with 2 ½ BU, performed cluster shots. Flow checked well OK (observed 150l loss). Pulled wet to 3183m. Pumped 5.9 m3 of 1.70 sg slug. No gain observed (expected gain 1250 l). POOH to surface. Pulled and retrieved wear bushing. RIH with 14" casing stands according to surge calculations. Run in open hole with CRTi to

Classification: Restricted Status: Final www.equinor.com



Doc. No. 2022-013511

Valid from: Dec 2022 Rev. no.: 0

3424m. Max flowrate of 1300 lpm (planned 2500 lpm) due to max 30 bar on string. Landed casing hanger by setting down all casing weight plus 7 ton of landing string. Circulated 1 1/2 BU, well stable.

Performed cement job. WOC with pressure on string due to floats not holding. Set and tested seal assembly. Installed wear bushing and pressure tested BOP. RIH with clean out BHA and tagged TOC at 3399m. Performed WL CBL from 3394 to 1370m.

RIH with 12 ½" x 13 ½" BHA. Displaced well to 1.70 sg OBM and fingerprinted. Drilled shoe track and 3m of new formation to 3463m. Performed XLOT w/ 1.96sg FPP, 1.92 sg FRP and 1.84 sg FCP.

#### **BIT RUNS**

This section was drilled in two runs with same Smith Hyperblade PDC bit.

Run 1: Drilled shoetrack and 3m of formation. Performed FIT. POOH due to MWD failure and changed MWD tool. Bit grading 2-1-CT-N-X-IN-NO-DTF

Run 2: Drilled to TD. Bit Grading 3-1-CT-C-X-IN-BF-TD.

Section was drilled in 41.1hrs (48 circulating hrs) giving 56.9/49.5 m/hr ROP (Net/Gross)

#### **DRILLING FLUID**

1.40sg RheGuard OBM

#### **CASING**

14" casing, 114 lb/ft. SM 125S, VamTop KB

#### MWD/BHA

BIT-PowerDrive-ArcVISION-TruLink

### **CEMENTING**

Pumped 21.5m3 of 1.50sg spacer. Not able to weigh up G-silica lead cement slurry up to 1.95sg as planned. Only lead slurry pumped (added planed tail slurry to lead slurry volume to get correct total m3) Pumped 118m3 of 1.91-1.92sg lead cement with reduced flow of 350-450lpm to keep recycle pump going. Top plug sheared after 175 stroked (178 theoretical). Did not bump top plug. FCP 177 bar. Pumped half a shoe track above theoretical bump. 2 m3 loss during pumping cement and 2 m3 loss during displacement.

### **LOGGING**

GR-RES-PRES acquired by LWD tool.

Cement bond log of 14" casing by Wireline.

# 5.9 NO 34/9-1 S, 12 1/4" x 13 1/2" (25.Apr.2022 08:15)

**START:** 25.Apr.2022 08:15 3463 mMD **END** : 04.May.2022 15:30 3996 mMD

### **OBJECTIVE**

Provide integrity for drilling the 10 5/8" x 12 1/4" section



Doc. No. 2022-013511

Valid from: Dec 2022 Rev. no.: 0

#### SUMMARY

Drilled 12  $\frac{1}{4}$ " x 13  $\frac{1}{2}$ " section from 3463m to section TD at 3989 m with 4000-4200 lpm, 8-18 tons WOB, 160-210 rpm/20-35 kNm. Max gas observed during drilling 3%.

Circulated 1x BU with additional 500 strokes to get declining gas trend. Pumped out of hole to above 13 ½" shoulder and closed upper underreamer. Activated lower underreamer and underreamed hole to 13 ½" from 3933 to 3989m. Circulated 1 1/2 BU while performing cluster shots. ESD recorded to 1.716 sg. Observed 1 m3/hr loss rate during flow check. Pumped OOH to 2995m according to swab calculations. Pumped slug and POOH.

RIH with 11 ¾" liner. Speed restricted due to friction at first DP stand at 646m. Broke circulation. RIH to 693m. Decision made to POOH due to high friction in well. When liner at surface, discovered that stop collars were mounted too close to the centralizers, leaving too little room for centralizers to collapse inside casing. Cut off 1 ea centralizer and 2 ea stop collars on shoe track, cut off all other centralizers and stop collars of the liner joints and ran back in hole with slick liner joints. Restricted running speed by either 35ton weight to overcome friction or 50 bar trapped pressure. Staged up flow and washed down to 4m and then 2 m above 13 ½" shoulder. No tag observed. Washed down to 12 ¼" TD and tagged with 5 ton. CBU and performed cement job. Dropped dart to set expandable hanger. Performed overpull test. Pumped slug and pulled out with RT. RIH with wireline and logged 11 ¾" cement. Pressure tested liner.

RIH with 10 5/8" x 12 ½" drilling BHA. Displaced to 1.96sg OBM (BaraECD - switched mud supplier to Halliburton) while drilling plugs. Performed fingerprinting and drilled out shoe track and 3m new formation. Not able to get FIT to minimum criteria of 2.04sg (planned 2.06sg). Pumped and squeezed LCM pill. Pressure held at 40.9 bar for 10 min. Drilled 1 m of new formation to 3993m and performed FIT to same result of 2.02sg. POOH and RIH with cement stinger. Performed injectivity test to 40 bar, 400 I lost during test. Performed cement squeeze job and held pressure until 100Bc. POOH with cement stinger and performed BOP test.

RIH with 10 5/8 x 12 1/4" drilling BHA. Tagged TOC at 3900m. Drilled out cement and 3m of new formation to 3996m. Recorded ESD to 1.956sg and performed FIT. Formation broke off at 2.049sg EWM. Recorded 2.04 sg as LOT.

### **BIT RUNS**

This section was drilled in one run with Smith Sharc SDSi616 PDC bit. Bit grading 0-1-WT-G-X-IN-CT-TD Section was drilled in 21.8hrs (40 circulating hrs) giving 24.9/20.7 m/hr ROP (Net/Gross)

### **DRILLING FLUID**

1.71sg RheGuard OBM

### **CASING**

11 ¾" liner, 60 lb/ft, P 110, Hydril 513 couplings. 1 centralizer/joint in shoetrack, no centralizers from shoetrack and up.

### MWD/BHA

BIT-PowerDrive-Rhino Reamer XC-ArcVISION-TeleScope-SonicScope-Rhino Reamer XS

### **CEMENTING**

Pumped 21.5 m3 of 1.75sg spacer. Mixed and pumped 12.88 m3 of 1.95 sg cement. Top plug sheared after 2140 strokes at 155 bar. Did not observe burst of bottom plug but observed increase in torque and pressure (90 to 100bar) as cement was being pumped up annulus. Top plug bumped at 3984 strokes (3900 theoretical) at 130 bar (FCP 60 bar). No losses observed.



Doc. No. 2022-013511

Valid from: Dec 2022 Rev. no.: 0

Performed cement squeeze job after not reaching required FIT value. Pumped 8m3 of 1.96 sg spacer. Mixed and pumped 6m3 of 1.97 sg slurry and displaced with 1.96 sg OBM at 1500 lpm.

#### **LOGGING**

GR-RES-PRES-Sonic acquired by LWD tool Cement bond log of 11 3/4" liner by Wireline

# 5.10 NO 34/9-1 S, 10 5/8" x 12 1/4" (04.May.2022 15:30)

**START:** 04.May.2022 15:30 3996 mMD **END** : 20.May.2022 16:55 4325 mMD

#### **OBJECTIVE**

Provide integrity for drilling the 8 1/2" reservoir section.

#### **SUMMARY**

Drilled 10 5/8" x 12  $\frac{1}{4}$ " section from 3996 m to section TD at 4322 m with 3000-3500 lpm/284-371 bar. 13-16 tons WOB, 150-170 rpm/11-30 kNm. Max gas reading during drilling was 6.74%.

Drilled to 4036m, picked off bottom and activated upper reamer. Connection gas observed. Performed dummy connection and 10-30-10 test according to HPHT manual at 4277m. Indicated gas response came from ballooning effect and not due to pore pressure. Drilled to TD at 4322mMD. Circulated hole clean and treated active system to casing running specifications. Performed HPHT short trip. Pumped/POOH with drilling BHA.

Retrieved wear bushing. Rigged up and RIH with 9 7/8" casing to above 11 3/4" liner and CBU.

Rigged up and ran ICB/CBL log in 9 7/8" casing with wireline

RIH with 8 ½" BHA and drilled shoe track. It was time consuming to drill through the top plug set, spent ~16 hours. Drilled firm cement through side-track. Displaced mud from 1.96sg ESD to planned 2.05sg ESD, however measured ESD was around 2.08-2.09sg ESD. Broke through the shoe and went on losses. ECD: 2.12-2.14sg EMW. Reduced flow parameters and established loss free rate. Washed down rathole and tagged cement at 4318m.

Ran Seismic log VSP for lookahead purposes. The depths of the formations ahead did not change, however reduced the uncertainty from  $\pm$ -50m to  $\pm$ -22m.

Performed squeeze cement job around 9 7/8" casing shoe.

Unable to perform planned FIT, resulted in a LOT with formation leaking off at 2.08 sg.

### **BIT RUNS**

This section was drilled in one run with Sharc MDSi616 PDC bit. Bit grading: 0-1-WT-G-X-In-BT-TD Section was drilled in 28.9hrs (79.9 circ hrs) giving 11.8/ 8.8 m/hrs (Net/Gross)

The cement and shoetrack was drilled with 8.5in HyperBlade YZ519S PDC bit. Bit grading: 0-1-BT-C-X-IN-PN-HP.

#### **DRILLING FLUID**

This section was drilled with 1.96sg ESD Halliburton BaraECD OBM.



Doc. No. 2022-013511

Valid from: Dec 2022 Rev. no.: 0

#### **CASING**

9 7/8" casing, 65.4 lb/ft, SM125S, VAM SLIJII. No centralizers/joint from hanger to 4056m, 2 centralizers/joint from 4056m

#### MWD/BHA

BIT-PowerDrive-Rhino Reamer XC-ArcVISION-TeleScope-SonicScope-Rhino Reamer XS.

For 8 1/2" BHA: BIT-EcoScope-Telescope-SonicScope

#### **CEMENTING**

Cement 9 7/8" Liner. Pumped 15 m3, 1.96sg of spacer #1. Experienced plugging of cement bulk line to batch mixer. Pumped 7 m3, 2.10sg of spacer #2. Pumped 8.1m3 of 2.15 sg pre-mixed cement slurry. Sheared top plug with 175 bar after 134 stks. Observed burst of bottom plug with 83 bar after 7464 stks (7492 theoretical). Top plug bumped at 7910 stks (7947 theoretical) with 108 bar. (FCP 38 bar). Total losses observed 116m3.

#### **LOGGING**

GR-RES-PRES-Sonic acquired by LWD tool.

Cement bond log (IBC-CBL) of 9 7/8" casing by Wireline.

Seismic log VSP acquired by Wireline. Deepest survey at 4295m, shallowest survey at 949.82m

# 5.11 NO 34/9-1 S, 8 1/2" HPHT (20.May.2022 16:55)

**START:** 20.May.2022 16:55 4325 mMD **END** : 28.May.2022 10:30 4370 mMD

#### **OBJECTIVE**

Drill/core 8 1/2" hole to well TD. Perform data acquisition as per plan

#### **SUMMARY**

Objective not met. Decided to stop drilling 8 ½" section above prognosed reservoir due to weak formation strength. Was not able to achieve planned FIT, which limited the kick margin.

Drilled 8 1/2" section from 4322 m to 4367 m with 1200-1300 lpm/165-190 bar, 8-11 tons WOB, 100-150 rpm/3-16 kNm. Stopped at 2x uncertainty (+/-22m) +10m safety margin above prognosed reservoir (prognosed reservoir was 4421m) and circulated 1 ½ BU. Flow checked well until 30 min stable trip tank, well stable. Circulated 1 BU after flow check, max gas after drilled to 4367m: 12%

Pumped out of hole with 500 lpm/33 bar from 4362-4398 m. Attempted to take a new FIT but formation leaked off to a LOT at 2.06 sg. RIH and circulated BU. Pumped 7,5m3 LCM pill and performed a LCM squeeze. Formation holding pressure at start of cement squeeze was 58 bar, but decreased to a stable pressure of 38 bar. Stopped the LCM squeeze due to the decreasing pressure indication break down of formation.

RIH and tagged TD, circulated BU. Max gas reading after LCM squeeze 23.9%.

Decided to pump/POOH and run 7" liner. RIH a 9 7/8" Casing Scraper Assembly and scraped the liner setting area from 4255m - 4240 m. CBU, max gas 23%. Pumped out of hole from 4355m to 3650m. Observed lower pump rate than the required 800 lpm in the tripping schedule in the swab calculations. Decided to RIH and circulate bottoms up. At 4360m circulated bottoms up. Max gas 11.83%. Pumped OOH to 2600. POOH.

Classification: Restricted Status: Final www.equinor.com



Doc. No. 2022-013511

Valid from: Dec 2022 Rev. no.: 0

Ran 7" liner and cemented same.

RIH with 6" drilling assembly and washed down inside 7" liner. Tagged cement at 4297 m. Observed some torque fluctuation and string stall outs during drilling of shoe track. Jar was used two times to pull string free. Fingerprinting was performed while drilling/washing shoe track down to 4367 m.

Drilled 3 m with new formation and attempted to take a FIT. Formation leaked off to a LOT at 2.06 sg, giving a MAASP of 30 bar at 7" shoe for continued drilling.

#### **BIT RUNS**

This section was drilled in one run with HyperBlade YZ519S PDC bit, same bit as previous run.

Bit grading: 2-1-BT-C-X-0-NO-TD

Section was drilled in 15.2hr (32.1 circ hr, 28.7 other hr) giving 3.0 m/hrs

9 7/8" Casing Scraper Assembly (CSA) was ran to scrape liner setting area 4255 m - 4240 m.

#### **DRILLING FLUID**

1.99 sg BaraECD OBM from Halliburton.

### **CASING**

7" Liner. 32.0 lb/ft. VAM HTTC. P-110.

Total length 133.95m. Length of shoetrack 66.2m

### MWD/BHA

BIT-EcoScope-Telescope-SonicScope

### **CEMENTING**

7in liner cement job. Pumped 9 m3 2.10 SG spacer ahead of cement. Batch mixed & Pumped 5 m3 2.15 SG slurry DH Observed bump of top plug

#### **LOGGING**

M/LWD: CALI-DEN-GR-NEU-PRES-REMP-SONIC

# 5.12 NO 34/9-1 S, 6" HPHT (28.May.2022 10:30)

**START:** 28.May.2022 10:30 4370 mMD **END** : 03.Jun.2022 18:30 4455 mMD

#### **OBJECTIVE**

Drill/core 6" hole to well TD. Perform data acquisition as per plan

#### **SUMMARY**

Objective not met. Was not able to reach desired well TD, stopped at 4455.0 mMD due too narrow drilling window.

Drilled 6" section from 4370.0 mMD to 4455.0 mMD with 550-620 lpm/129-156 bar, 3-7 tons WOB, 85-120 rpm/3-9 kNm.



Doc. No. 2022-013511

Valid from: Dec 2022 Rev. no.: 0

Drilled 6" hole from 4370 m to 4386 m where well was displaced from 1.965 sg to 1.985 sg MW50. During drilling from 4386 m to 4413 m the well was flow checked and circulated BU every 5 m. Max gas observed with 1.965 sg mud was 9.68 % TG (Pump off gas) and with 1.985 sg 10.19% TG (Pump off gas).

ESD values measured after the stops were measured to 2.012-2.013 sg, except from at 4413 m where ESD reading was 2.005 sq.

Drilled 6" hole from 4413 m to 4427 m and performed a new flow check, well static. ESD reading was 2.005 sg and decision were made to weigh up to 2.105 sg ESD/1.995 sg MW50. New ESD measurement after displacing well was 2.020 sg.

Drilled 6" hole from 4427 m to 4455 m. Had to pick off bottom on several occasions from 4435 m to 4445 due to pressure peaks and pack off tendencies. Rotated with 5-10 rpm during flow checks and experienced some torque spikes up to 7-9 kNm. Well static. Max gas measured 7.32%.

TD set @4455 mMD due to narrow drilling window.

Pumped out of hole until 2700 mMD and pull out of hole on trip tank to surface.

#### **BIT RUNS**

This section was drilled in one run with VSX613 PDC bit. Bit grading: 0-1-VT-S-X-I-JD-TD

Section was drilled in 262.5 hr (40.4 hr on formation, 20.8 hr on cement, 150.6 circ. hr and 50.7 other hr) giving 2.58 m/hrs

#### **DRILLING FLUID**

This section was drilled with 1.965 sg to 1.995 sg Halliburton BaraECD OBM. Due to pump off gas measurements mud weight was raised to 1.985 sg at 4413 m and to 1.995 sg at 4427 m.

### MWD/BHA

BIT-Impulse VPWD - AND Vision

MWD/LWD with gamma ray, resistivity, directional, density and neutron acquired.

#### **LOGGING**

LEH\_FAA, EDTG\_B, PPC, AH\_184

### 5.13 NO 34/9-1 S, Permanent P&A (DP) w/ RIG (03.Jun.2022 18:30)

**START:** 03.Jun.2022 18:30 mMD **END** : 19.Jun.2022 04:00 4455 mMD

#### **OBJECTIVE**

Permanent plug and abandonment of the 34/9-1 S

### **SUMMARY**

RIH to 4428m with cement stinger, restricted by surge calculation. Washed down and tagged TD at 4455m with 3 ton. Observed obstruction/ledge at 4425m which was also seen on wireline logs. Pumped OOH to above PBR and circulated out gas (Max 6.7%) through kill and choke. Slight losses observed in active.

Page 64 of 196



Doc. No. 2022-013511

Valid from: Dec 2022 Rev. no.: 0

Cement plug #1: (Primary barrier to Intra Sola Fm.). Pumped 8m3 of 2.10sg spacer and 5 m3 of 2.15 cement slurry. Slurry was Batch mixed. Cut cement at 4355m. Reduced flowrate from 1200 to 1100lpm due to loss trend. Max gas recorded to 8.06%.

Pumped OOH according to swab calculations. Observed gain due to overflow on shaker pits into active volume and pits that were not included in active system.

RIH with 6" dress-off BHA. Tagged TOC @ 4410m (theoretical TOC @4355m). Decision made to redo cement plug #1. RIH with stinger and tagged TOC @ 4407m. Observed losses while circulating BU with 1200lpm. 2-300l gain when flow reduced to 700lpm. Max gas of 8.8% from tagged TOC. Obstruction seen at 4397m when attempting to wash down. Re attempted with no success.

Cement plug #2 (re-attempt of plug #1): Pumped 8m3 of 2.10sg spacer and 6m3 of 2.15sg cement slurry. Slurry was Batch mixed. Cut cement at 4310m with 500lpm. Max gas recorded when circulating BU was 4.7%.

Pumped and pulled OOH according to swab calculations. RIH with 6" dress-off BHA. Speed restricted by surge calculations. Tagged firm cement @4321m with 2 ton. Dressed off cement to 4366m and tagged with 10ton. CBU and max gas recorded to 0.4% and ESD to 2.109sg. Pumped and pulled OOH according to swab calculations. RIH with 3 ½" stinger and tagged TOC @ 4367m.

Cement plug #3 (Secondary barrier to Intra Sola fm and primary and secondary barrier to stringers in Rødby fm): Pumped 8m3 of 2.10sg spacer and 9.2 m3 of 2.15 SG cement slurry. Slurry was Batch mixed. Cut cement at 4066m with 500lpm.

RIH with 8 1/2" dress-off BHA and tagged firm cement @ 4106m with 10 ton. Displaced well from 1.995sg to 1.955sg Bara ECD OBM MW50. POOH unrestricted.

Disconnected LMRP and changed choke coflex hose due observed leak. Re-connected LMRP and performed BOP test.

M/U 9 7/8" cutting BHA and RIH. Speed restricted due to tight clearance inside casing. Positioned cutters at 2670m. Increased flow in steps up to 1200lpm and observed pressure drop from 106 to 80 bar. Pressure gradually increasing back up to 98 bar causing inconclusive verification of cut. Recorded reference pressures and stalling test until good cut could be verified. POOH with cutting BHA and RIH with SRT. Took 15ton overpull to free seal assembly. Observed 120 ltrs gain on strip tank, no pressure build-up on kill/choke. Circulated BU through MGS to verify cut. Total losses of 5m3 and max gas of 0.8%. RIH with spear, engaged same and pulled 9 5/8" casing to surface.

RIH with 14" EZSV plug. Speed restricted by plug limitation. EZSV set at 2657m, tagged with 10 ton and pressure tested to 150bar for 10min. Displaced well from 1.96sg BaraECD OBM (HAL) to 1.43sg Rheguard (SLB) OBM.

Cement plug #4: (Primary and secondary barrier to Tryggvason Formation). Pumped 8m3 of 1.50sg spacer. Mixed and pumped 15.6m3 of 1.95sg cement slurry. Experienced some difficulties maintaining correct density during mixing. Pulled above cement with EZSV RT. Speed restricted due to wet pipe. Circulated to cut cement at 2457m and POOH.

RIH with 12 ¼" dress-off BHA. Float in NB Stab causing discrepancies between trip sheet and theoretical OE volume. Washed down and tagged TOC with 5 ton at 2467m. Dressed off to 2487m and tagged with 11 ton.

RIH with 14" EZSV. Speed restricted by plug limitations. Washed setting area, set plug and tagged with 9 ton at 1805m.

Cement plug #5 (Primary and secondary barrier to Lista Fm): Pumped 8m3 of 1.50sg spacer with 2500lpm. Mixed and pumped 15.6m3 of 1.96sg cement slurry. Started fly-mixing, however changed over to manual due to difficulties seen

Classification: Restricted Status: Final www.equinor.com



Doc. No. 2022-013511

Valid from: Dec 2022 Rev. no.: 0

with high density slurry, same as previous cement plug. Mixed 1.93sg manually. Pulled above cement with EZSV RT with restricted speed. Circulated to cut cement at 1605m and POOH.

RIH with 12 ¼" dress-off BHA to 1534m. Circulated to reduce MW from 1.43 to 1.40sg OBM MW50 while WOC. Washed down and tagged cement at 1609m with 5 ton. Dressed off to 1620 and tagged firm cement with 10 ton. POOH.

RIH with 14" cutter BHA and positioned cutters at 706m. Observed a pressure spike of 100 bar before pressure dropped to 40 bar. Immediately after cutting also experience vibration on the rig and loss of stack bore pressure and BOP alarms. Lost signal on blue pod. Decision made to continue with only yellow pod functional.

RIH with SRT and pulled seal free with 10 ton. No issues pulling seal free despite probable impact during cut, no pressure build up and no gas observed while circulating BU. Observed restriction while pulling SRT, need for additional waiting time for UAP to fully retract. Overpull seen when pulling casing hanger above BOP. POOH and racked back 14" casing.

RIH with 20" EZSV and riser bristle assembly. Tagged cut at 704.5m and set EZSV at 700.38m. Displaced well to seawater.

Cement plug #6: (Environmental plug): Mixed and pumped 17.8m3 of 1.95 sg cement slurry with 600lpm. Displaced with 7.7m3 of SW.

POOH with EZSV RT, jet wash BOP and. POOH while washing/brush riser. R/U and pulled BOP to surface while cutting wellhead (cumulative 8.5hrs time spent cutting) in AUX.

# 5.14 NO 34/9-1 S, Move from Location (19.Jun.2022 04:00)

**START:** 19.Jun.2022 04:00 mMD **END** : 19.Jun.2022 08:30 0 mMD

### **OBJECTIVE**

Move off location

#### **SUMMARY**

Classification: Restricted

Anchor handling of 4 last anchors and moved out of 500m zone



Page 67 of 196

Final well report,
Pilot well NO 34/9-U-1
and Exploration well NO 34/9-1 S Cambozola

Doc. No. 2022-013511

Valid from: Dec 2022 Rev. no.: 0

# 6 Appendices



Doc. No. 2022-013511

Valid from: Dec 2022 Rev. no.: 0

# App A Operational listing

WELLBORE ID: NO 34/9-1 S

**INTERVAL:** 26" x 42"

**START TIME:** 09.Apr.2022 14:35 **END TIME:** 11.Apr.2022 19:20

| Report date | Description                                                                                              |
|-------------|----------------------------------------------------------------------------------------------------------|
| 10.Apr.2022 | Rig in transit to Cambozola location. Prepared to spud well. Tagged seafloor at 412 m. Spudded well and  |
| 10.Αρι.2022 | drilled 26"x42" section from 412 m to 446 m.                                                             |
| 11.Apr.2022 | Drilled 26"x42" hole to TD at 468.3 m. RIH with 36" conductor. Cement conductor in place. Held conductor |
| 11.Apr.2022 | in tension while waiting on cement.                                                                      |

INTERVAL: 26"

**START TIME:** 11.Apr.2022 19:20 **END TIME:** 18.Apr.2022 04:20

| Report date | Description                                                                                                                                                                                                                                        |
|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 12.Apr.2022 | Held 36" conductor while waiting on cement. Drilled 26" section to 665 m.                                                                                                                                                                          |
| 13.Apr.2022 | Drilled 26" hole to section TD at 1300m RKB and circulated hole clean. Meanwhile in AUX: Ran 20" casing to seabed.                                                                                                                                 |
| 14.Apr.2022 | POOH with 26" BHA. Ran and cemented 20" surface casing.                                                                                                                                                                                            |
| 15.Apr.2022 | Released HPWHH running tool, POOS and L/D running tool. Performed in between wells BOP planned maintenance.                                                                                                                                        |
| 16.Apr.2022 | Performed BOP in between wells maintenance scope. Performed conductor grouting job.                                                                                                                                                                |
| 17.Apr.2022 | Finalized BOP in between wells maintenance scope. Performed second grouting job outside conductor. Ran and landed BOP. Pressure tested wellhead connector and 20" surface casing. Installed diverter and rigged down BOP/riser handling equipment. |

**INTERVAL:** 17 1/2"

**START TIME:** 18.Apr.2022 04:20 **END TIME:** 25.Apr.2022 08:15

| Report date | Description                                                                                                                                                            |
|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 18.Apr.2022 | R/D riser handling equipment. RIH with 17 1/2" BHA. Drilled shoetrack and displaced well to 1.40sg OBM. Performed FIT below 20" shoe. POOH to replace failed MWD tool. |
| 19.Apr.2022 | RIH with backup 17 1/2" BHA. Performed new FIT below 20" shoe. Drilled 17 1/2" hole from 1303m to 2204m.                                                               |
| 20.Apr.2022 | Drilled 17 1/2" hole from 2204m to 3378m.                                                                                                                              |
| 21.Apr.2022 | Drilled 17 1/2" hole to TD. Circulated hole clean, POOH and R/B BHA. Pulled and retrieved wearbushing. RIH with 14" casing stands.                                     |
| 22.Apr.2022 | Ran 14" casing to TD. Circulated hole clean and started cement job.                                                                                                    |
| 23.Apr.2022 | Cemented 14" casing. WOC with pressure on string due to floats not holding. Set and tested seal assembly. Installed wearbushing. Pressure tested BOP.                  |

Classification: Restricted Status: Final www.equinor.com



Doc. No. 2022-013511

Valid from: Dec 2022 Rev. no.: 0

| Report date | Description                                                                                                                                                                                                        |
|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 24.Apr.2022 | Pressure tested shear rams. Performed clean-out run to tag TOC inside 14" casing. Performed rig up test of simplified kick assembly. Performed cement bond logging of 14" casing on wireline.                      |
| 25.Apr.2022 | Performed cement bond logging on wireline. Pressure tested 14" casing. M/U and RIH with 12 1/4" x 13 1/2" BHA. Drilled shoetrack. Displaced well to 1.70sg OBM. Performed finger printing and well control drills. |

INTERVAL: 12 1/4" x 13 1/2" START TIME: 25.Apr.2022 08:15 END TIME: 04.May.2022 15:30

| Report date | Description                                                                                                                                                                                                                                             |
|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 26.Apr.2022 | Drilled out shoetrack and 3m new formation. Performed XLOT below 14" shoe. Drilled 12 1/4" x 13 1/2" hole from 3463m to 3775m.                                                                                                                          |
| 27.Apr.2022 | Drilled and underreamed 12 1/4" x 13 1/2" hole to TD, circulated hole clean, flow checked well, pumped/pulled out of hole to 703m.                                                                                                                      |
| 28.Apr.2022 | POOH with 12 1/4" x 13 1/2" drilling BHA, R/U and RIH with 11 3/4" liner to 693m, high friction in the well experienced. POOH 11 3/4" liner to surface.                                                                                                 |
| 29.Apr.2022 | RIH with slick 11 3/4" liner with restricted speed due to high friction experienced in the well.                                                                                                                                                        |
| 30.Apr.2022 | RIH with 11 3/4" liner to setting depth and tagged bottom. Circulated BU. M/U cement stand and cemented liner. Set expandable liner hanger and released RT. POOH with the RT to below BOP and performed flow check.                                     |
| 01.May.2022 | POOH with liner RT, wait on cement, performed training to handle and rig up simplified kick assembly, RIH with wireline and logged 11 3/4" cement, POOH with wireline. Pressure tested 11 3/4" liner. RIH with 10 5/8" x 12 1/4" drilling BHA to 3927m. |
| 02.May.2022 | RIH 10 5/8" x 12 1/4" drilling BHA, displaced to 1.96 sg OBM while drilling plugs, performed fingerprinting, drilled out remaining shoetrack and 3 m fresh formation, failed FIT, pumped LCM pill for squeeze.                                          |
| 03.May.2022 | Performed LCM squeeze, drilled 1 m new formation, re-attempted FIT - no go, POOH, RIH with cement stinger, performed injectivity test, circulated and conditioned well prior to cement squeeze operation.                                               |
| 04.May.2022 | Performed cement squeeze, held pressure till 100 BC. POOH with the cement stinger, performed BOP test.                                                                                                                                                  |

INTERVAL: 10 5/8" x 12 1/4" START TIME: 04.May.2022 15:30 END TIME: 20.May.2022 16:55

| Report date | Description                                                                                                                                                                                                                                                                          |
|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 05.May.2022 | RIH with 10 5/8" x 12 1/4" BHA, drilled cement and 3 m new formation, performed FIT, drilled 10 5/8" x 12 1/4" hole to 4043m.                                                                                                                                                        |
| 06.May.2022 | Drilled 10 5/8" x 12 1/4" hole from 4043 m to 4277m in HPHT mode                                                                                                                                                                                                                     |
| 07.May.2022 | Circulated BU to check for connection gas. Performed HPHT 10-30-10 test and circulated out gas from pump off events. Drilled to TD at 4322 m MD, activated lower reamer and reamed down to TD. Circulated hole                                                                       |
| 08.May.2022 | clean and started to dilute mud to optimize rheology for casing running.  Circulated and conditioned mud system, flowchecked at TD, performed HPHT short trip. Circulated bottoms up, and evaluated gas response, max gas 3.3%. Pumped and pulled out of hole to 4041m with 500 lpm. |



Doc. No. 2022-013511

Valid from: Dec 2022 Rev. no.: 0

| Report date | Description                                                                                                                                                                                                                                    |
|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 09.May.2022 | Pumped/POOH with 10 5/8" x 12 1/4" drilling BHA to surface. retrieved 14" Wear Bushing, R/U and RIH with 9 7/8" casing to 876m.                                                                                                                |
| 10.May.2022 | Ran 9 7/8" casing to above 11 3/4" liner, circulated BU, observed losses and reduced flow to loss free rate at 600 lpm, continued to run 9 7/8" casing 3890m. P/U and M/U casing hanger, ran 9 7/8" casing on 5 7/8" HWLS to 3969m.            |
| 11.May.2022 | Ran 9 7/8" casing and landed casing hanger. Cemented 9 7/8" casing in place. Set seal assembly and pressure tested same.                                                                                                                       |
| 12.May.2022 | Installed 9 7/8" Wearbushing. Ran BOP test tool and performed BOP test part 1. Performed planned maintenance on Top Drive.                                                                                                                     |
| 13.May.2022 | Completed planned maintenance on Top Drive. Completed BOP test part 2. Rigged up and ran ICB/CBL log on 9 7/8" casing. Pressure tested 9 7/8" casing. Started to RIH with 8 1/2" BHA.                                                          |
| 14.May.2022 | RIH with 8 1/2" BHA. Started to drill plugs. Displaced well from 1.96 sg to 2.05 sg OBM.                                                                                                                                                       |
| 15.May.2022 | Continued to drill plug set. Circulated and conditioned mud. Performed fingerprinting. Drilled shoetrack.                                                                                                                                      |
| 16.May.2022 | Finished fingerpring procedures. Drilled shoetrack and 9 7/8" shoe. Experienced losses, when drilled out shoe. Circulated bottoms up with closed BOP. Flowchecked well on trip tank, closed in well. Monitored for pressure build up on choke. |
| 17.May.2022 | Flowchecked well. Pumped slug and POOH with 8 1/2" Drilling BHA. Rigged up and commenced VSP wireline logging.                                                                                                                                 |
| 18.May.2022 | Performed VSP wireline logging. RIH with cement stinger and performed squeeze cement job around 9 7/8" casing shoe.                                                                                                                            |
| 19.May.2022 | Squeezed cement around 9 7/8" casing shoe. Waited on cement. RIH to theoretical top of cement.                                                                                                                                                 |
| 20.May.2022 | Performed cement squeeze and waited on cement. POOH with cement stinger. RIH with 8 1/2" drilling BHA.  Washed down and started to displace well to 1.99 sg.                                                                                   |

INTERVAL: 8 1/2" HPHT

**START TIME:** 20.May.2022 16:55 **END TIME:** 28.May.2022 10:30

| Report date | Description                                                                                                                                                                                                     |
|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 21.May.2022 | Displaced well from 2.05 sg to 1.99 sg. Washed down and drilled 9 7/8" shoetrack and rathole. Performed LOT in rathole. Drilled 3m new formation and performed open hole LOT. Drilled 8 1/2" section to 4348 m. |
| 22.May.2022 | Drilled 8 1/2" hole to 4367 m. Circulated hole clean. Performed open hole LOT. Performed LCM squeeze.                                                                                                           |
| 23.May.2022 | Circulated bottoms up. Flowchecked well. Pumped and pulled out of hole with 8 1/2" BHA. Made up and RIH with casing scraper assembly.                                                                           |
| 24.May.2022 | Scraped 9 7/8" casing and circulated bottoms up. Flow checked well. Pumped out of hole with 9 7/8" casing scraper assembly. Made up and RIH with 7" liner.                                                      |
| 25.May.2022 | Ran and cemented 7" liner.                                                                                                                                                                                      |
| 26.May.2022 | POOH with liner RT. Performed BOP test. Pressure tested 7" liner.                                                                                                                                               |
| 27.May.2022 | M/U and RIH with 6" BHA and performed fingerprinting and well control drills. Started drilling shoetrack.                                                                                                       |
| 28.May.2022 | Drilled 7" liner shoetrack with 6" BHA and cleaned rat hole.                                                                                                                                                    |



Doc. No. 2022-013511

Valid from: Dec 2022 Rev. no.: 0

**INTERVAL:** 6" HPHT

**START TIME:** 28.May.2022 10:30 **END TIME:** 03.Jun.2022 18:30

| Report date | Description                                                                                                                                                                                                                                                |
|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 29.May.2022 | Drilled 3m new formation and performed LOT below 7" shoe. Drilled 6" hole from 4370m to 4386m. Flowchecked well and started displacing well to 1.985sg MW50 (2.02sg ESD).                                                                                  |
| 30.May.2022 | Displaced well from 1.965sg to 1.985sg MW50. Drilled 6" hole from 4386m to 4403m, flowchecking and circulating B/U every 5m for monitoring trend in gas response.                                                                                          |
| 31.May.2022 | Drilled 6" hole from 4403m to 4427m in steps. Flowchecked and circulated up pumps off events after each step to monitor development in gas response to interpret overbalance against pore pressure. Started displacing well to 2.015sg ESD (1.995sg MW50). |
| 01.Jun.2022 | Displaced well to 2.015+sg ESD (1.995sg MW50). Drilled 6" hole in steps from 4427m to 4445m. flowchecked well and circulated gas out after each step to monitor development in gas response to interpret overbalance against pore pressure.                |
| 02.Jun.2022 | Drilled 6" hole in steps to TD at 4455m. Flowchecked and circulated out gas peaks after each step to monitor development in gas response to interpret overbalance against pore pressure. Started performing 2hr extended flowcheck at TD prior to POOH.    |
| 03.Jun.2022 | Performed extended flowchecks at TD and inside 7" liner. Ran back to bottom and circulated out gas. Started pumping out of hole with 6" drilling BHA.                                                                                                      |

INTERVAL: Permanent P&A (DP) w/ RIG

**START TIME:** 03.Jun.2022 18:30 **END TIME:** 19.Jun.2022 04:00

| Report date | Description                                                                                                                                                                                                                                                                                                        |
|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 04.Jun.2022 | POOH and L/D 6" BHA. Performed OH wireline logging. Started RIH with cement stinger from surface for P&A.                                                                                                                                                                                                          |
| 05.Jun.2022 | Circulated out gas prior to setting P&A plug #1. Set P&A plug #1 from TD and into 7" liner. Started pulling out of hole with cement stinger.                                                                                                                                                                       |
| 06.Jun.2022 | POOH with cement stinger. RIH with 6" dress-off assembly. Tagged TOC at 4410m (55m deeper than theoretical TOC). Circulated hole clean and started pumping out of hole.                                                                                                                                            |
| 07.Jun.2022 | POOH with 6" dress-off assembly. RIH with 3 1/2" cement stinger. Started circulating bottoms up prior to setting cement plug from open hole and into 7" liner.                                                                                                                                                     |
| 08.Jun.2022 | Circulated BU till low gas levels achieved, flow checked well. Washed down with cement stinger, unable to go any deeper than 4397m. Placed cement plug#2, pulled out to 4310m and circulated 1.2 BU. Flow checked well, pumped/POOH, function tested BOP and continued to POOH with 3 1/2" cement stinger to 309m. |
| 09.Jun.2022 | RIH with 6" dress off BHA, dress/tag firm cement, circulated BU, POOH.                                                                                                                                                                                                                                             |
| 10.Jun.2022 | RIH with 3 1/2" cement stinger, circulated BU, placed cement plug, pulled out of cement, circulated clean, POOH with 3 1/2" cement stinger to 383m.                                                                                                                                                                |
| 11.Jun.2022 | RIH with 8 1/2" dress off BHA, dressed off/tagged firm cement, displaced well to 1.96 sg OBM, POOH, displaced kill/choke lines and riser to seawater.                                                                                                                                                              |
| 12.Jun.2022 | Laid out diverter, lifted off LMRP, changed choke line coflex hose and tested same, Closed and locked Split Tension Ring, prepared to land LMRP.                                                                                                                                                                   |



Doc. No. 2022-013511

Valid from: Dec 2022 Rev. no.: 0

| Report date | Description                                                                                                                                                                                                                                                                                                                                               |
|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 13.Jun.2022 | RIH with WBRTT and pressure tested BOP. Pulled WB and laid down WBRTT. RIH with 9 7/8" cutter BHA to 2670m, closed BOP. Established circulation to activate cutter.                                                                                                                                                                                       |
| 14.Jun.2022 | POOH with 9 7/8" cutter BHA, RIH and engaged SRT to seal assembly, closed UAP and circulated BU, flow checked, opened UAP, POOH with SRT and seal assembly. RIH with spear and pulled casing hanger to surface, POOH with 9 7/8" casing to surface. M/U and RIH with 14" EZSV to 515m.                                                                    |
| 15.Jun.2022 | RIH and set 14" EZSV, displaced well to 1.43 sg Rhegaurd OBM, placed 200m cement plug, pulled out of cement and circulated BU, POOH. RIH with 12 1/4" dress off BHA, dressed off and tagged firm cement, POOH and RIH with 14" EZSV plug to 775m.                                                                                                         |
| 16.Jun.2022 | RIH and set 14" EZSV, place 200m cement plug, pulled out of cement and circulate BU, POOH with EZSV RT. RIH with 12 1/4" dress off BHA, cut back MW from 1.44 sg MW50 to 1.40 sg MW50, dressed/tagged firm cement, POOH with dress off BHA, RIH with 14" cutter BHA. closed UAP and cut 14" casing. Flow checked well on strip tank prior to opening UAP. |
| 17.Jun.2022 | RIH with SRT/Spear BHA. pulled and laid out SA and casing hanger, POOH with 14" casings. RIH and set 20" EZSV plug, displaced well to seawater.                                                                                                                                                                                                           |
| 18.Jun.2022 | Placed 100m cement plug above EZSV, pulled out of cement, activated jetting sub and washed BOP/riser, POOH with 20" EZSV plug RT. R/U for pulling riser/BOP, L/D diverter, disconnected BOP. opened STR and L/D slip joint. Meanwhile, RIH with WH cutter from aux to cut and pull wellhead. Meanwhile started anchor handling                            |

INTERVAL: Move from Location START TIME: 19.Jun.2022 04:00 END TIME: 19.Jun.2022 08:30

| Report date | Description                                                                               |
|-------------|-------------------------------------------------------------------------------------------|
| 19.Jun.2022 | Pulled BOP on riser to 60m, WOW for pulling BOP through splash zone, performed DP trials. |

From DBR



Doc. No. 2022-013511

Valid from: Dec 2022 Rev. no.: 0

# App B Directional data. survey listing

# Norway

Q0034 EXPLORATION 34/09-1 Cambozola 34/9-1 NO 34/9-1 34/9-1 S

Design: 34/9-1 S

# **Standard Survey Report**

Status: Final

17 august, 2022

Classification: Restricted

Page 73 of 196



Page 74 of 196

Final well report, Pilot well NO 34/9-U-1 and Exploration well NO 34/9-1 S Cambozola Doc. No. 2022-013511

Valid from: Dec 2022 Rev. no.: 0

## Survey Report

Local Co-ordinate Reference: Company: Site 34/09-1 Cambozola Norway Q0034 EXPLORATION TVD Reference: Deepsea Stavanger RT @ 30.00m Project: 34/09-1 Cambozola Site: MD Reference: Deepsea Stavanger RT @ 30.00m Well: 34/9-1 North Reference Grid Wellbore: 34/9-1 S Survey Calculation Method: Minimum Curvature

34/9-1 S Production EDM P246N Design: Database:

Q0034 EXPLORATION Project Mean Sea Level Universal Transverse Mercator System Datum: Map System:

European 1950 - Mean Geo Datum: Zone 31N (0 E to 6 E) Map Zone: Using geodetic scale factor

34/09-1 Cambozola, 34/9 Site 6,794,080.30 m Northing: 61° 16' 45 6892 N Site Position: Latitude: Мар Easting: 489,939.60 m Longitude: 2° 48' 44.4633 E Position Uncertainty: 0.00 m Slot Radius: 13.200 in

34/9-1 Well Well Position +N/-S 0.00 m Northing: 6.794.080.30 m Latitude: 61° 16' 45.6892 N 0.00 m 489,939.60 m 2° 48' 44.4633 E +E/-W Easting: Longitude: Position Uncertainty 0.00 m Wellhead Depth: 382.00 m Water Depth: 382.00 m Grid Convergence: -0.16 °

34/9-1 S Wellbore Magnetics Model Name Sample Date Declination Dip Angle Field Strength (nT) (°) 3NETICREFERENCE 05.04.2022 0.66 73.37 51,412

Design 34/9-1 S Audit Notes: ACTUAL 0.00 Tie On Depth: Version: 1.0 Phase: Vertical Section: Depth From (TVD) +N/-S +E/-W Direction (m) (m) (m) (°) 0.00 0.00 0.00 13.59

Survey Program Date 01.07.2022 From To (m) (m) Survey (Wellbore) Tool Name Description 450.66 42" x 26" SPUD BHA (34/9-1 S) 412.00 Inclination Only Inclination only surveys, vertical wells (inc < 2 1,266.11 26" MWD Motor BHA (34/9-1 S) Inclination Only Plan 487.72 Inclination only surveys planned with 2 deg max. e 3.443.57 17 1/2" MWD RSS BHA (34/9-1 S) Magn, IFR, non-mag, reduce Magnetic Tools (MWD, EMS) without gyro-verificatio 1.327.06 3,485,00 3,960.03 12 1/4" x 13 1/2" MWD\_RSS BHA (34/9-1 Magn, IFR, non-mag, reduce Magnetic Tools (MWD, EMS) without gyro-verificatio 4,004.60 4,294.45 10 5/8" x 12 1/4" MWD\_RSS BHA (34/9-1 Magn, IFR, non-mag, reduce Magnetic Tools (MWD, EMS) without gyro-verificatio 4,348.20 4,348.20 8 1/2" MWD\_Rotary BHA (34/9-1 S) Magn, IFR, non-mag, reduce Magnetic Tools (MWD, EMS) without gyro-verificatio

| Survey                   |                    |                |                          |              |              |                            |                           |                          |                         |
|--------------------------|--------------------|----------------|--------------------------|--------------|--------------|----------------------------|---------------------------|--------------------------|-------------------------|
| Measured<br>Depth<br>(m) | Inclination<br>(°) | Azimuth<br>(°) | Vertical<br>Depth<br>(m) | +N/-S<br>(m) | +E/-W<br>(m) | Vertical<br>Section<br>(m) | Dogleg<br>Rate<br>(°/30m) | Build<br>Rate<br>(°/30m) | Turn<br>Rate<br>(°/30m) |
| 0.00                     | 0.00               | 0.00           | 0.00                     | -0.40        | -0.30        | -0.46                      | 0.000                     | 0.000                    | 0.000                   |
| 412.00                   | 0.00               | 0.00           | 412.00                   | -0.40        | -0.30        | -0.46                      | 0.000                     | 0.000                    | 0.000                   |
| 418.76                   | 0.23               | 23.13          | 418.76                   | -0.39        | -0.29        | -0.45                      | 1.021                     | 1.021                    | 0.000                   |
| 428.39                   | 1.09               | 113.73         | 428.39                   | -0.41        | -0.20        | -0.44                      | 3.478                     | 2.679                    | 282.243                 |
| 436.19                   | 0.51               | 43.08          | 438.19                   | -0.41        | -0.11        | -0.43                      | 3.997                     | -2.231                   | -271.731                |

17.08.2022.07:47:04 COMPASS 5000.16 Build 99 Page 2



Final well report, Pilot well NO 34/9-U-1 Doc. No. 2022-013511

and Exploration well NO 34/9-1 S Cambozola Valid from: Dec 2022 Rev. no.: 0

## Survey Report

Company: Norway

Project: Q0034 EXPLORATION

Site: 34/09-1 Cambozola Well: 34/9-1

Wellbore: 34/9-1 S Design: 34/9-1 S Local Co-ordinate Reference:

TVD Reference: MD Reference: North Reference:

Survey Calculation Method: Database: Site 34/09-1 Cambozola

Deepsea Stavanger RT @ 30.00m Deepsea Stavanger RT @ 30.00m

Grid

Minimum Curvature Production EDM P246N

| Survey |          |                       |                |          |                |              |                |          |           |                    |
|--------|----------|-----------------------|----------------|----------|----------------|--------------|----------------|----------|-----------|--------------------|
|        | Measured |                       |                | Vertical |                |              | Vertical       | Dogleg   | Build     | Turn               |
|        | Depth    | In all and the second | A ! 4 b        | Depth    | +N/-S          | +E/-W        | Section        | Rate     | Rate      | Rate               |
|        | (m)      | Inclination<br>(°)    | Azimuth<br>(°) | (m)      | +N/-S<br>(m)   | +E/-W<br>(m) | (m)            | (°/30m)  | (°/30m)   | (°/30m)            |
|        | (111)    | ()                    | O              |          | (111)          | (III)        | ()             | (150111) | ( /50111) | (130111)           |
|        | 444.50   | 0.14                  | 343.78         | 444.50   | -0.37          | -0.09        | -0.38          | 1.642    | -1.336    | -214.079           |
|        | 450.66   | 0.53                  | 65.63          | 450.66   | -0.36          | -0.07        | -0.36          | 2.575    | 1.899     | 398.620            |
|        | 487.72   | 0.45                  | 97.38          | 487.72   | -0.30          | 0.24         | -0.24          | 0.226    | -0.065    | 25.702             |
|        | 580.72   | 0.49                  | 94.99          | 580.71   | -0.38          | 0.99         | -0.14          | 0.014    | 0.013     | -0.771             |
|        | 669.67   | 0.52                  | 135.54         | 669.66   | -0.71          | 1.66         | -0.30          | 0.118    | 0.010     | 13.676             |
|        |          |                       |                |          |                |              |                |          |           |                    |
|        | 680.00   | 0.36                  | 109.90         | 679.99   | -0.75          | 1.72         | -0.33          | 0.726    | -0.465    | -74.463            |
|        | 773.68   | 0.50                  | 127.10         | 773.67   | -1.10          | 2.32         | -0.52          | 0.061    | 0.045     | 5.508              |
|        | 850.97   | 0.59                  | 113.95         | 850.95   | -1.46          | 2.95         | -0.73          | 0.060    | 0.035     | -5.104             |
|        | 930.46   | 1.02                  | 117.93         | 930.44   | -1.96          | 3.95         | -0.98          | 0.164    | 0.162     | 1.502              |
|        | 1,029.55 | 1.22                  | 122.37         | 1,029.51 | -2.94          | 5.62         | -1.53          | 0.066    | 0.061     | 1.344              |
|        |          |                       |                |          |                |              |                |          |           |                    |
|        | 1,126.78 | 0.91                  | 117.98         | 1,126.72 | -3.85          | 7.18         | -2.06          | 0.099    | -0.096    | -1.355             |
|        | 1,266.11 | 1.01                  | 108.00         | 1,266.03 | -4.75          | 9.32         | -2.43          | 0.042    | 0.022     | -2.149             |
|        | 1,327.06 | 0.32                  | 133.70         | 1,326.98 | -5.04          | 9.96         | -2.56          | 0.362    | -0.340    | 12.650             |
|        | 1,365.45 | 0.14                  | 313.55         | 1,365.37 | -5.08          | 10.00        | -2.59          | 0.359    | -0.141    | 140.544            |
|        | 1,403.99 | 0.14                  | 256.91         | 1,403.91 | -5.06          | 9.92         | -2.58          | 0.103    | 0.000     | -44.089            |
|        | 1.442.81 | 0.22                  | 179.22         | 1.442.73 | -5.14          | 9.88         | -2.68          | 0.181    | 0.062     | -60.039            |
|        | 1,442.81 | 0.22                  | 1/9.22         | 1,442.73 | -5.14<br>-5.25 | 9.88         | -2.68<br>-2.78 | 0.181    | -0.062    | -00.039<br>-24.235 |
|        | 1,481.32 |                       |                |          | -5.25<br>-5.29 | 9.90         | -2.78<br>-2.83 |          |           | -24.235<br>89.093  |
|        |          | 0.14                  | 264.02         | 1,520.27 |                |              |                | 0.176    | 0.008     |                    |
|        | 1,598.03 | 0.22                  | 158.26         | 1,597.95 | -5.44          | 9.84         | -2.98          | 0.112    | 0.031     | -40.844<br>43.348  |
|        | 1,636.29 | 0.15                  | 102.98         | 1,636.21 | -5.52          | 9.91         | -3.04          | 0.143    | -0.055    | -43.346            |
|        | 1,674.64 | 0.09                  | 163.64         | 1,674.56 | -5.56          | 9.97         | -3.06          | 0.103    | -0.047    | 47.452             |
|        | 1,713.14 | 0.39                  | 73.62          | 1,713.06 | -5.56          | 10.11        | -3.03          | 0.312    | 0.234     | -70.145            |
|        | 1,751.43 | 0.15                  | 178.94         | 1,751.35 | -5.57          | 10.23        | -3.01          | 0.355    | -0.188    | 82.518             |
|        | 1,789.85 | 0.10                  | 113.64         | 1,789.76 | -5.66          | 10.23        | -3.07          | 0.194    | 0.094     | -50.989            |
|        | 1,828.23 | 0.13                  | 355.09         | 1,828.14 | -5.65          | 10.31        | -3.05          | 0.134    | -0.109    | -92.665            |
|        | .,525.25 | 0.13                  | 500.00         | 1,020.14 | -0.00          | 10.00        | -0.00          | 3.270    | 3.100     | 02.000             |
|        | 1,867.38 | 0.18                  | 358.60         | 1,867.29 | -5.54          | 10.39        | -2.95          | 0.039    | 0.038     | 2.690              |
|        | 1,904.88 | 0.21                  | 14.95          | 1,904.79 | -5.42          | 10.40        | -2.82          | 0.050    | 0.024     | 13.080             |
|        | 1,943.38 | 0.15                  | 147.02         | 1,943.29 | -5.39          | 10.45        | -2.78          | 0.257    | -0.047    | 102.912            |
|        | 2,060.33 | 0.17                  | 86.85          | 2,060.24 | -5.51          | 10.71        | -2.84          | 0.041    | 0.005     | -15.435            |
|        | 2,098.81 | 0.14                  | 107.21         | 2,098.72 | -5.52          | 10.81        | -2.83          | 0.049    | -0.023    | 15.873             |
|        |          |                       |                |          |                |              |                |          |           |                    |
|        | 2,136.27 | 1.55                  | 9.79           | 2,136.18 | -5.03          | 10.94        | -2.32          | 1.261    | 1.129     | -78.019            |
|        | 2,173.64 | 3.44                  | 7.04           | 2,173.51 | -3.42          | 11.16        | -0.71          | 1.520    | 1.517     | -2.208             |
|        | 2,212.45 | 4.67                  | 13.02          | 2,212.22 | -0.73          | 11.66        | 2.03           | 1.004    | 0.951     | 4.623              |
|        | 2,289.41 | 7.34                  | 12.50          | 2,288.76 | 7.12           | 13.43        | 10.08          | 1.041    | 1.041     | -0.203             |
|        | 2,328.77 | 8.37                  | 12.43          | 2,327.75 | 12.38          | 14.59        | 15.46          | 0.785    | 0.785     | -0.053             |
|        |          |                       |                |          |                |              |                |          |           |                    |
|        | 2,366.36 | 9.52                  | 10.75          | 2,364.88 | 18.10          | 15.76        | 21.30          | 0.941    | 0.918     | -1.341             |
|        | 2,405.16 | 10.01                 | 11.48          | 2,403.12 | 24.56          | 17.03        | 27.87          | 0.390    | 0.379     | 0.549              |
|        | 2,442.93 | 10.22                 | 11.85          | 2,440.30 | 31.06          | 18.37        | 34.50          | 0.175    | 0.167     | 0.310              |
|        | 2,481.47 | 10.30                 | 12.65          | 2,478.22 | 37.76          | 19.83        | 41.37          | 0.127    | 0.062     | 0.623              |
|        | 2,520.15 | 10.38                 | 13.72          | 2,516.27 | 44.52          | 21.41        | 48.31          | 0.161    | 0.062     | 0.830              |
|        |          |                       |                |          | _              |              | _              |          |           |                    |
|        | 2,558.13 | 10.27                 | 13.33          | 2,553.64 | 51.14          | 23.00        | 55.12          | 0.103    | -0.087    | -0.308             |
|        | 2,597.52 | 10.27                 | 12.39          | 2,592.40 | 57.99          | 24.57        | 62.14          | 0.128    | 0.000     | -0.716             |
|        | 2,635.88 | 10.18                 | 10.19          | 2,630.15 | 64.66          | 25.90        | 68.94          | 0.313    | -0.070    | -1.721             |
|        | 2,674.24 | 10.51                 | 10.44          | 2,667.89 | 71.44          | 27.13        | 75.82          | 0.260    | 0.258     | 0.196              |

17.08.2022 07:47:04 Page 3 COMPASS 5000.16 Build 99



Final well report, Pilot well NO 34/9-U-1 Doc. No. 2022-013511

Valid from: Dec 2022 Rev. no.: 0

Survey Report

Company:

Classification: Restricted

Project:

Norway

and Exploration well NO 34/9-1 S Cambozola

Q0034 EXPLORATION 34/09-1 Cambozola

Site: 34/09-1 Well: 34/9-1

Wellbore: 34/9-1 S Design: 34/9-1 S Local Co-ordinate Reference:

TVD Reference: MD Reference: North Reference:

Survey Calculation Method:

Database:

Site 34/09-1 Cambozola

Deepsea Stavanger RT @ 30.00m Deepsea Stavanger RT @ 30.00m

Grid

Minimum Curvature Production EDM P246N

| rey      |             |         |          |        |       |          |         |         |         |
|----------|-------------|---------|----------|--------|-------|----------|---------|---------|---------|
| Measured |             |         | Vertical |        |       | Vertical | Dogleg  | Build   | Turn    |
| Depth    |             |         | Depth    |        | .=    | Section  | Rate    | Rate    | Rate    |
|          | Inclination | Azimuth |          | +N/-S  | +E/-W |          |         |         |         |
| (m)      | (°)         | (°)     | (m)      | (m)    | (m)   | (m)      | (°/30m) | (°/30m) | (°/30m) |
| 2,712.62 | 10.82       | 10.90   | 2,705.60 | 78.42  | 28.45 | 82.91    | 0.251   | 0.242   | 0.360   |
| 2,750.23 | 10.75       | 8.69    | 2.742.55 | 85.36  | 29.65 | 89.93    | 0.335   | -0.056  | -1.763  |
| 2,789.49 | 10.94       | 9.06    | 2,781.11 | 92.65  | 30.78 | 97.29    | 0.155   | 0.145   | 0.283   |
| 2,828.13 | 10.95       | 9.06    | 2,819.04 | 99.90  | 31.94 | 104.61   | 0.008   | 0.008   | 0.000   |
| 2,866.72 | 10.76       | 8.20    | 2,856.94 | 107.08 | 33.03 | 111.85   | 0.194   | -0.148  | -0.669  |
| 2,905.78 | 10.62       | 8.23    | 2,895.33 | 114.25 | 34.07 | 119.06   | 0.108   | -0.108  | 0.023   |
| 2,943.64 | 10.82       | 7.25    | 2.932.52 | 121.23 | 35.01 | 126.07   | 0.214   | 0.158   | -0.777  |
| 2.982.37 | 10.92       | 7.70    | 2,970.56 | 128.47 | 35.96 | 133.33   | 0.102   | 0.077   | 0.349   |
| 3,020.35 | 10.95       | 8.81    | 3,007.85 | 135.60 | 37.00 | 140.50   | 0.168   | 0.024   | 0.877   |
| 3.059.01 | 10.68       | 10.92   | 3,045.82 | 142.75 | 38.24 | 147.74   | 0.372   | -0.210  | 1.637   |
| 3,097.31 | 10.78       | 11.43   | 3,083.45 | 149.75 | 39.62 | 154.86   | 0.108   | 0.078   | 0.399   |
| 5,007.51 | 10.70       | 11.40   | 5,000.40 | 140.70 | 00.02 | 104.00   | 0.100   | 0.070   | 0.550   |
| 3,136.31 | 10.61       | 9.78    | 3,121.78 | 156.86 | 40.95 | 162.09   | 0.269   | -0.131  | -1.269  |
| 3,174.74 | 10.86       | 10.99   | 3,159.53 | 163.90 | 42.25 | 169.24   | 0.263   | 0.195   | 0.945   |
| 3,250.78 | 10.72       | 13.27   | 3,234.23 | 177.81 | 45.23 | 183.46   | 0.177   | -0.055  | 0.900   |
| 3,289.58 | 10.77       | 14.36   | 3,272.35 | 184.84 | 46.96 | 190.70   | 0.162   | 0.039   | 0.843   |
| 3,328.23 | 10.83       | 12.93   | 3,310.32 | 191.88 | 48.67 | 197.94   | 0.213   | 0.047   | -1.110  |
| 3,365.97 | 10.64       | 11.38   | 3,347.39 | 198.75 | 50.15 | 204.97   | 0.275   | -0.151  | -1.232  |
| 3,443.57 | 10.89       | 12.76   | 3,423.63 | 212.92 | 53.18 | 219.45   | 0.139   | 0.097   | 0.534   |
| 3,485.00 | 11.00       | 14.89   | 3,464.31 | 220.56 | 55.06 | 227.32   | 0.303   | 0.080   | 1.542   |
| 3,518.57 | 10.98       | 16.79   | 3,497.26 | 226.71 | 56.81 | 233.71   | 0.324   | -0.018  | 1.698   |
| 3,564.24 | 11.03       | 13.62   | 3,542.09 | 235.12 | 59.10 | 242.43   | 0.399   | 0.033   | -2.082  |
| 3.602.80 | 10.77       | 12.03   | 3,579,96 | 242.23 | 60.72 | 249.72   | 0.309   | -0.202  | -1.237  |
| 3,641.07 | 10.63       | 10.51   | 3,617.56 | 249.20 | 62.10 | 256.81   | 0.247   | -0.110  | -1.192  |
| 3,717.08 | 10.59       | 9.45    | 3,692.27 | 262.98 | 64.53 | 270.78   | 0.079   | -0.016  | -0.418  |
| 3,756.21 | 10.48       | 9.90    | 3,730.74 | 270.03 | 65.73 | 277.91   | 0.118   | -0.100  | 0.345   |
| 3,794.86 | 10.57       | 11.19   | 3,768.74 | 276.96 | 67.02 | 284.96   | 0.202   | 0.085   | 1.001   |
| 3.833.23 | 10.63       | 12.38   | 3.806.46 | 283.87 | 68.46 | 292.01   | 0.177   | 0.047   | 0.930   |
| 3,833.23 | 10.03       | 12.38   | 3,800.40 | 283.87 | 70.07 | 292.01   | 0.177   | 0.101   | 0.930   |
| 3,927.33 | 10.76       | 14.19   | 3,898.92 | 300.86 | 70.07 | 309.48   | 0.173   | -0.065  | 0.450   |
| 3,960.03 | 10.04       | 14.19   | 3,931.06 | 300.86 | 74.02 | 315.54   | 0.100   | 0.003   | 0.450   |
| 4,004.60 | 10.72       | 15.91   | 3,974.83 | 314.82 | 76.22 | 323.92   | 0.099   | 0.073   | 0.895   |
| 4,004.00 | 10.07       | 10.81   | 3,874.03 | 314.02 | 10.22 | 323.82   | 0.236   | 0.100   | 0.000   |
| 4,016.98 | 10.91       | 16.31   | 3,986.99 | 317.08 | 76.88 | 326.26   | 0.234   | -0.145  | 0.969   |
| 4,055.38 | 11.20       | 15.95   | 4,024.67 | 324.15 | 78.92 | 333.62   | 0.233   | 0.227   | -0.281  |
| 4,093.94 | 9.54        | 12.29   | 4,062.60 | 330.88 | 80.63 | 340.56   | 1.389   | -1.291  | -2.848  |
| 4,132.11 | 8.05        | 14.45   | 4,100.32 | 336.55 | 81.97 | 346.39   | 1.199   | -1.171  | 1.698   |
| 4,169.95 | 6.85        | 14.35   | 4,137.84 | 341.31 | 83.19 | 351.30   | 0.951   | -0.951  | -0.079  |
| 4,209.01 | 4.15        | 2.28    | 4,176.72 | 344.98 | 83.82 | 355.01   | 2.245   | -2.074  | -9.270  |
| 4,232.97 | 2.64        | 352.29  | 4,200.64 | 346.39 | 83.79 | 356.38   | 2.024   | -1.891  | -12.508 |
| 4,247.27 | 1.77        | 344.71  | 4.214.93 | 346.93 | 83.68 | 356.88   | 1.921   | -1.825  | -15.902 |
| 4,285.97 | 0.28        | 58.86   | 4,253.62 | 347.55 | 83.61 | 357.47   | 1.329   | -1.155  | 57.481  |
| 4,294.45 | 0.23        | 102.76  | 4,262.10 | 347.56 | 83.64 | 357.48   | 0.694   | -0.177  | 155.307 |
| 4.348.20 | 0.63        | 75.89   | 4,315.85 | 347.61 | 84.03 | 357.62   | 0.244   | 0.223   | -14.997 |
|          |             | 75.883  |          |        | 94.03 | 357 67   | 0.744   | 0.223   |         |

17.08.2022 07:47:04 Page 4 COMPASS 5000.16 Build 99

Status: Final



Final well report, Pilot well NO 34/9-U-1

and Exploration well NO 34/9-1 S Cambozola

Doc. No. 2022-013511

Valid from: Dec 2022 Rev. no.: 0

Survey Report

Company: Norway

Q0034 EXPLORATION Project: 34/09-1 Cambozola

Well: 34/9-1 34/9-1 S Wellbore: 34/9-1 S Design:

Local Co-ordinate Reference:

TVD Reference: MD Reference: North Reference: Survey Calculation Method: Site 34/09-1 Cambozola

Deepsea Stavanger RT @ 30.00m Deepsea Stavanger RT @ 30.00m

Grid

Minimum Curvature Production EDM P246N

Checked By: Approved By: Date:

Database:

Page 77 of 196



Valid from: Dec 2022 Rev. no.: 0

Doc. No. 2022-013511

# App C Contractors list

| Service                          | Contract no           | Contractor                |
|----------------------------------|-----------------------|---------------------------|
| Liner Hanger Equipment           | Hall, LINHEQ          | Halliburton               |
| Subsea WH/X-mas tree             | GEOG, SUBXM, BH       | Baker Hughes GE Oil & Gas |
| Clean BHA                        | Hall CLN BHA          | Halliburton               |
| Directional survey               | Gyrodata, DIR SURV    | Gyrodata. Inc.            |
| Casing                           | OWS, CAS              | Odfjell Well Services     |
| Fishing                          | BH, FISH              | Baker Hughes              |
| Drilling Fluids                  | Schlum, DRF           | Schlumberger              |
| Plug                             | Hall, PLUG            | Halliburton               |
| Directional Drilling             | Schlum, DDR           | Schlumberger              |
| Mud Logging                      | Schlum, MLG           | Schlumberger              |
| MWD - Measurement While Drilling | Schlum, MWD           | Schlumberger              |
| Cementing                        | Schlum, CEM           | Schlumberger              |
| Electric Wireline Logging        | Schlum, EWL           | Schlumberger              |
| Drilling Fluids                  | Hall, DRF             | Halliburton               |
| Rig Operations                   | ODS, RIG              | Odfjell Drilling AS       |
| Bit                              | Schlum, BIT           | Schlumberger              |
| Coring                           | Res Grp, CORE         | Reservoir Group           |
| Fluid transfer/analysis          | Expro, Fluid transfer | Expro                     |



Doc. No. 2022-013511

Valid from: Dec 2022 Rev. no.: 0

# App D Wellsite sample description



|                  |              |              | (              | CUTTINGS DESCRIPTION                                                                                                          | Page 1 of 28                           |
|------------------|--------------|--------------|----------------|-------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
| Country:         | Norway       |              | Area:          | Northern North Sea                                                                                                            | Field: Cambozola                       |
| Well no:         | NO 34/9      |              | Company:       | Equinor Energy AS 35% (operator), Longboat Energy AS<br>Norway AS 20%, Petoro AS 20%                                          | S 25%, Spirit Energy                   |
| RKB:             | 30 met       | ers          | Geologist:     | J. Alme, M. Vanhatalo, J. D. Jackson, A. G. Hesthagen                                                                         |                                        |
| Hole size:       | 17 ½"        |              |                |                                                                                                                               | Date: 13.04-01.06.2022                 |
|                  |              |              |                | Lithological Description                                                                                                      | Remarks                                |
| Depth<br>(m RKB) | Lith.<br>(%) | Rock<br>name |                | colour, grain size, sorting, roundness, matrix, cementation,<br>sed.structures, accessories, fossils, porosity, contamination | Shows, cavings, mud<br>additives, etc. |
| 1303             | 60           | Clst         | m-dk one o     | lv gry, mod hd, amor-blky, slty, non calc, micromic                                                                           | 1                                      |
| 1303             | 40           | Sltst        |                | cc brnsh-olv gry, frm-mod hd, amor, occ fri, v f sdy,                                                                         |                                        |
|                  |              |              |                | d micromic                                                                                                                    |                                        |
|                  |              |              |                | 17 ½" section                                                                                                                 |                                        |
| 1310             | 80           | Clst         | a.a.           |                                                                                                                               |                                        |
| <b>——</b>        | 20           | Sltst        | a.a.           |                                                                                                                               |                                        |
| 1320             | 80           | Clst         | a.a.           |                                                                                                                               |                                        |
|                  | 20           | Sltst        | a.a.           |                                                                                                                               |                                        |
|                  |              |              |                |                                                                                                                               |                                        |
| 1330             | 100          | Slty Clst    |                | blk, frm-mod hd, blky, non calc, v slty, grad Sltst,<br>r Glauc, Tr Carb Mat, Tr vf Qtz gn                                    |                                        |
| 1340             | 100          | Slty Clst    | 9.9            |                                                                                                                               |                                        |
| 1340             | 100          | Sity Cist    | d.d.           |                                                                                                                               |                                        |
| 1350             | 100          | Slty Clst    | a.a.           |                                                                                                                               |                                        |
|                  |              |              |                |                                                                                                                               |                                        |
| 1270             | 100          | at at        |                |                                                                                                                               |                                        |
| 1370             | 100          | Slty Clst    | a.a.           |                                                                                                                               |                                        |
| 1380             | 100          | Slty Clst    | a.a.           |                                                                                                                               |                                        |
|                  |              |              |                |                                                                                                                               |                                        |
| 1390             | 100          | Slty Clst    | a.a.           |                                                                                                                               |                                        |
| 1400             | 100          | Clty Clat    |                |                                                                                                                               |                                        |
| 1400             | 100          | Slty Clst    | a.a.           |                                                                                                                               |                                        |
| 1410             | 100          | Slty Clst    | a.a.           |                                                                                                                               |                                        |
|                  |              |              |                |                                                                                                                               |                                        |
| 1420             | 100          | Clst         | less slty, els | se a.a.                                                                                                                       |                                        |
| 1430             | 100          | Clst         | 0.0            |                                                                                                                               |                                        |
| 1430             | 100          | CIST         | a.a.           |                                                                                                                               |                                        |
| 1440             | 100          | Clst         | a.a.           |                                                                                                                               |                                        |
|                  |              |              |                |                                                                                                                               |                                        |
| 1450             | 100          | Clst         | a.a.           |                                                                                                                               |                                        |
| 1460             | 100          | Clot         | 0.0            |                                                                                                                               |                                        |
| 1460             | 100          | Clst         | a.a.           |                                                                                                                               |                                        |
| 1470             | 100          | Clst         | a.a.           |                                                                                                                               |                                        |
| ,0               | 100          |              |                |                                                                                                                               |                                        |
| 1480             | 100          | Clst         | a.a.           |                                                                                                                               |                                        |



Doc. No. 2022-013511

Valid from: Dec 2022 Rev. no.: 0



|            |           |             | C            | CUTTINGS DESCRIPTION                                                                 | Page 2 of 28           |
|------------|-----------|-------------|--------------|--------------------------------------------------------------------------------------|------------------------|
| Country:   | Norway    | 7           | Area:        | Northern North Sea                                                                   | Field: Cambozola       |
| Well no:   | NO 34/    | 9-1 S       | Company:     | Equinor Energy AS 35% (operator), Longboat Energy AS<br>Norway AS 20%, Petoro AS 20% | 25%, Spirit Energy     |
| RKB:       | 30 met    | ers         | Geologist:   | J. Alme, M. Vanhatalo, J. D. Jackson, A. G. Hesthagen                                |                        |
| Hole size: | 17 ½"     |             |              |                                                                                      | Date: 13.04-01.06.2022 |
|            |           |             |              | Lithological Description                                                             | Remarks                |
| Depth      | Lith.     | Rock        |              | colour, grain size, sorting, roundness, matrix, cementation,                         | Shows, cavings, mud    |
| (m RKB)    | (%)       | name        | hardness,    | sed.structures, accessories, fossils, porosity, contamination                        | additives, etc.        |
| 1490       | 100       | Clst        | olv gry-olv  | blk, frm-mod hd, blky, non calc, v slty, grad Sltst,                                 |                        |
|            | _         |             | micromic, tr | r Glauc, Tr Carb Mat                                                                 |                        |
| 1500       | 100       | Clst        | a.a.         |                                                                                      |                        |
| 1300       | 100       | CIST        | a.a.         |                                                                                      |                        |
| 1510       | 100       | Clst        | a.a.         |                                                                                      |                        |
|            |           |             |              |                                                                                      |                        |
| 1520       | 100       | Clst        | a.a.         |                                                                                      |                        |
| 1530       | 100       | Clst        | dk gry-oly g | gry-olv blk, frm-mod hd, blky, non calc, v slty, grad                                |                        |
| 1000       | 100       |             |              | mic, tr Glauc, Tr Carb Mat                                                           |                        |
|            | -         |             |              |                                                                                      |                        |
| 1540       | 100       | Clst        | a.a.         |                                                                                      |                        |
| 10.0       | 100       |             |              |                                                                                      |                        |
| 1550       | 100       | Clst        | a.a.         |                                                                                      |                        |
|            | Tr Sst    |             |              | gry, frm, vf-f, r m, sbang-sbrndd, mod srt, non calc,                                |                        |
|            |           |             | arg/Kaol Mt  | trx, Tr Glauc, Tr Carb Mat                                                           |                        |
| 1560       | 90        | Clst        | a.a.         |                                                                                      |                        |
|            | 10        | Sst         | a.a.         |                                                                                      |                        |
|            |           |             |              |                                                                                      |                        |
| 1570       | 70        | Clst        | a.a.         |                                                                                      |                        |
|            | 30        | Sst         | a.a.         |                                                                                      |                        |
| 1580       | 90        | Clst        | a.a.         |                                                                                      |                        |
| 1500       | 10        | Sst         | a.a.         |                                                                                      |                        |
|            | -         |             |              |                                                                                      |                        |
| 1590       | 80        | Clst        | a.a.         |                                                                                      |                        |
|            | 10        | Sst         | a.a.         |                                                                                      |                        |
| 1600       | 00        | Cl-t        |              |                                                                                      |                        |
| 1600       | 90<br>10  | Clst<br>Sst | a.a.<br>a.a. |                                                                                      |                        |
|            | 10        | OSL         | d.d.         |                                                                                      |                        |
| 1610       | 70        | Clst        | a.a.         |                                                                                      |                        |
|            | Tr        | Sst         | a.a.         |                                                                                      |                        |
| 1/20       | 100       | Cl-r        |              |                                                                                      |                        |
| 1620       | 100<br>Tr | Clst<br>Sst | a.a.         |                                                                                      |                        |
|            | 11        | OSL         | a.a.         |                                                                                      |                        |
| 1630       | 100       | Clst        | a.a.         |                                                                                      |                        |
|            | Tr        | Sst         | a.a.         |                                                                                      |                        |



Doc. No. 2022-013511

Valid from: Dec 2022 Rev. no.: 0



|              |                                                                             |                                                                                                                                                                                                                                                                                                         | CUTTINGS DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Page 3 of 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|--------------|-----------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Norway       |                                                                             | Area:                                                                                                                                                                                                                                                                                                   | Northern North Sea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Field: Cambozola                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| NO 34/9      | 9-1 S                                                                       | Company:                                                                                                                                                                                                                                                                                                | Equinor Energy AS 35% (operator), Longboat Energy AS 2<br>Norway AS 20%, Petoro AS 20%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 25%, Spirit Energy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 30 mete      | ers                                                                         | Geologist:                                                                                                                                                                                                                                                                                              | J. Alme, M. Vanhatalo, J. D. Jackson, A. G. Hesthagen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 17 %"        |                                                                             |                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Date: 13.04-01.06.2022                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|              |                                                                             |                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Remarks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Lith.<br>(%) | Rock<br>name                                                                |                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Shows, cavings, mud<br>additives, etc.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|              |                                                                             |                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 100          | Clst                                                                        |                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Tr           | Ls                                                                          |                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|              | -                                                                           | , , , , , , , , , , , , , , , , , , ,                                                                                                                                                                                                                                                                   | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 100          | Clst                                                                        | a.a.                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|              |                                                                             |                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|              |                                                                             |                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 100          | Clst                                                                        |                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Top Green Clay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Tr           | Ls                                                                          | _                                                                                                                                                                                                                                                                                                       | ac, only, interesting a contact, as contact                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|              |                                                                             |                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 100          | Clst                                                                        | a.a.                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Tr           | Ls                                                                          | a.a.                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|              |                                                                             |                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 100          | Clst                                                                        | a.a.                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|              |                                                                             |                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|              |                                                                             |                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 100          | Clst                                                                        | a.a.                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Tr           | Ls                                                                          | a.a.                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|              |                                                                             |                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 100          | Clst                                                                        |                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Tr           | Ls                                                                          | a.a.                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|              |                                                                             |                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 100          | Clst                                                                        | a.a.                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Tr           | Ls                                                                          | a.a.                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|              |                                                                             |                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|              |                                                                             | a.a.                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Tr           | Ls                                                                          | a.a.                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 100          | C1 .                                                                        |                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|              |                                                                             |                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Iř           | LS                                                                          | a.a.                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 100          | CIL.                                                                        | -                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|              |                                                                             |                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Iř           | LS                                                                          | a.a.                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 100          | Clar                                                                        |                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|              |                                                                             |                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 11           | LS                                                                          | a.a.                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 100          | Clet                                                                        |                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|              |                                                                             | _                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 11           | LS                                                                          | a.a.                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|              | 30 mete<br>17 ½" Lith. (%) 100 Tr | Lith. (%) Rock (%) name  100 Clst  Tr Ls  100 Clst  Tr Ls | 30 meters 17 ½"  Lith. Rock (%) name hardness, s  100 Clst gnsh blk-dk micromic, tr  Tr Ls dk yelsh brn  100 Clst a.a.  Tr Ls a.a.  100 Clst a.a.  Tr Ls a.a. | Norway AS 20% Petoro AS 20%  Geologist: J. Alme, M. Vanhatalo, J. D. Jackson, A. G. Hesthagen  Lith. Rock (%) Mod.lith, colour, grain size, sorting, roundness, matrix, cementation, hardness, sed.structures, accessories, fossils, porosity, contamination  Clst gnsh blk-dk gry-olv gry-olv blk, frm-mod hd, blky, non calc, v slty, micromic, tr Glauc, Tr Carb Mat  Tr Ls dk yelsh brn, frm-mod hd, brit, vf sdy  100 Clst a.a.  Tr Ls a.a.  100 Clst dk gnsh gry, gnsh blk. also dk gry-olv gry-olv blk, frm-mod hd, blky, non calc, slty, micromic, tr Glauc, Tr Carb Mat  Tr Ls a.a.  100 Clst a.a.  Tr Ls a.a. |



Doc. No. 2022-013511

Valid from: Dec 2022 Rev. no.: 0



|            |        |       | (            | CUTTINGS DESCRIPTION                                                                 | Page 4 of 28          |
|------------|--------|-------|--------------|--------------------------------------------------------------------------------------|-----------------------|
| Country:   | Norway | r     | Area:        | Northern North Sea                                                                   | Field: Cambozola      |
| Well no:   | NO 34/ | 9-1 S | Company:     | Equinor Energy AS 35% (operator), Longboat Energy AS<br>Norway AS 20%, Petoro AS 20% | 25%, Spirit Energy    |
| RKB:       | 30 met | ers   | Geologist:   | J. Alme, M. Vanhatalo, J. D. Jackson, A. G. Hesthagen                                |                       |
| Hole size: | 17 ½"  |       |              |                                                                                      | Date: 13.04-01.06.202 |
|            |        |       |              | Lithological Description                                                             | Remarks               |
| Depth      | Lith.  | Rock  | Mod.lith,    | colour, grain size, sorting, roundness, matrix, cementation,                         | Shows, cavings, mu    |
| (m RKB)    | (%)    | name  | hardness,    | sed.structures, accessories, fossils, porosity, contamination                        | additives, etc.       |
|            |        |       |              |                                                                                      |                       |
| 1780       | 100    | Clst  | a.a.         |                                                                                      |                       |
|            | Tr     | Ls    | a.a.         |                                                                                      |                       |
|            |        |       |              |                                                                                      |                       |
| 1790       | 100    | Clst  | a.a.         |                                                                                      |                       |
|            | Tr     | Ls    | a.a.         |                                                                                      |                       |
|            |        |       |              |                                                                                      |                       |
| 1800       | 100    | Clst  | a.a.         |                                                                                      |                       |
|            | Tr     | Ls    | a.a.         |                                                                                      |                       |
|            |        |       |              |                                                                                      |                       |
| 1810       | 100    | Clst  | a.a.         |                                                                                      |                       |
|            | Tr     | Ls    | a.a.         |                                                                                      |                       |
|            |        |       |              |                                                                                      |                       |
| 1820       | 100    | Clst  | a.a.         |                                                                                      |                       |
|            | Tr     | Ls    | a.a.         |                                                                                      |                       |
|            | -      |       |              |                                                                                      |                       |
| 1830       | 100    | Clst  | pred mod b   | rn, i.p. dk gnsh gry-olv blk, frm-mod hd, blky, non calc,                            |                       |
| 1000       | 100    | Cisc  | slty, micron |                                                                                      |                       |
|            | Tr     | Ls    | a.a.         |                                                                                      |                       |
|            |        | Lo    | a.a.         |                                                                                      |                       |
| 1840       | 100    | Clst  | a.a.         |                                                                                      |                       |
| 1010       | Tr     | Ls    | a.a.         |                                                                                      |                       |
|            |        | 2.5   |              |                                                                                      |                       |
| 1850       | 100    | Clst  | a.a.         |                                                                                      |                       |
| 1050       | Tr     | Ls    | a.a.         |                                                                                      |                       |
|            | 11     | LS    | a.a.         |                                                                                      |                       |
| 1860       | 100    | Clst  | a.a.         |                                                                                      |                       |
| 1000       | Tr     | Ls    | a.a.         |                                                                                      |                       |
|            | 11     | LS    | a.a.         |                                                                                      |                       |
| 1870       | 100    | Clst  | a.a.         |                                                                                      |                       |
| 10/0       | Tr     |       |              |                                                                                      |                       |
|            | 11     | Ls    | a.a.         |                                                                                      |                       |
| 1880       | 100    | Clst  |              |                                                                                      |                       |
| 1000       |        |       | a.a.         |                                                                                      |                       |
|            | Tr     | Ls    | a.a.         |                                                                                      |                       |
| 1890       | 100    | Clst  | pred grysh   | blk-olv gry, i.p. olv blk, frm-mod hd, blky, non calc,                               |                       |
|            |        |       | slty, micron | nic                                                                                  |                       |
|            | Tr     | Ls    | a.a.         |                                                                                      |                       |
|            |        |       |              |                                                                                      |                       |
| 1900       | 80     | Clst  | a.a.         |                                                                                      |                       |
| -,,,,,     | 20     | Tf    |              | gry, mott/spkld dk gry-blk, sft-frm, arg, i.p. vf Sd, slily                          |                       |
|            | [      |       | calc         | 6-7, France - 6-7,                                                                   |                       |



Doc. No. 2022-013511

Valid from: Dec 2022 Rev. no.: 0



|            |          |            | (                          | CUTTINGS DESCRIPTION                                                                                                  | Page 5 of 28                                     |
|------------|----------|------------|----------------------------|-----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|
| Country:   | Norway   |            | Area:                      | Northern North Sea                                                                                                    | Field: Cambozola                                 |
| Well no:   | NO 34/9  |            | Company:                   | Equinor Energy AS 35% (operator), Longboat Energy AS<br>Norway AS 20%, Petoro AS 20%                                  | 25%, Spirit Energy                               |
| RKB:       | 30 met   | ers        | Geologist:                 | J. Alme, M. Vanhatalo, J. D. Jackson, A. G. Hesthagen                                                                 |                                                  |
| Hole size: | 17 ½"    |            |                            |                                                                                                                       | Date: 13.04-01.06.2022                           |
|            |          |            |                            | Lithological Description                                                                                              | Remarks                                          |
| Depth      | Lith.    | Rock       |                            | colour, grain size, sorting, roundness, matrix, cementation,                                                          | Shows, cavings, mud                              |
| (m RKB)    | (%)      | name       | hardness,                  | sed.structures, accessories, fossils, porosity, contamination                                                         | additives, etc.                                  |
| 1010       | 00       | CI         | T                          |                                                                                                                       | T                                                |
| 1910       | 80<br>20 | Clst<br>Tf | a.a.                       |                                                                                                                       |                                                  |
|            | 20       | 11         | a.a.                       |                                                                                                                       |                                                  |
| 1020       | 80       | Clst       |                            |                                                                                                                       | <del>                                     </del> |
| 1920       | 20       | Tf         | a.a.                       |                                                                                                                       |                                                  |
|            | 20       | 11         |                            |                                                                                                                       |                                                  |
| 1930       | 100      | Clst       | dk gry-olv g<br>Tr Carb Ma | gry-olv blk, frm-mod hd, blky, non calc, slty, micromic,                                                              |                                                  |
|            | Tr       | Tf         | a.a.                       |                                                                                                                       |                                                  |
|            |          | 1          |                            |                                                                                                                       |                                                  |
| 1940       | 80       | Clst       | a.a.                       |                                                                                                                       |                                                  |
| 17.0       | 20       | Tf         |                            |                                                                                                                       |                                                  |
|            |          | -          |                            |                                                                                                                       |                                                  |
| 1950       | 100      | Clst       |                            | ry-gnsh blk, i.p. olv gry-olv blk, frm-mod hd, blky, non<br>icromic, Tr Carb Mat                                      |                                                  |
|            | Tr       | Tf         | a.a.                       |                                                                                                                       |                                                  |
|            |          |            |                            |                                                                                                                       |                                                  |
| 1960       | 100      | Clst       | micromic, 7                | dk gnsh gry, mod hd, amor-blky, non-slily calc, slty,<br>fr Glauc i.p.                                                |                                                  |
|            | Tr       | Tf         | lt-m gry, mo               | ott/spkld dk gry-blk, sft-frm, amor, arg, i.p. v f sdy, slily                                                         |                                                  |
| 1970       | 100      | Clst       |                            |                                                                                                                       | +                                                |
| 19/0       | Tr       | Tf         | a.a.                       |                                                                                                                       |                                                  |
|            | 11       | 11         | a.a.                       |                                                                                                                       | +                                                |
| 1980       | 100      | Clst       | a.a.                       |                                                                                                                       |                                                  |
| 1700       | Tr       | Tf         | a.a.                       |                                                                                                                       |                                                  |
|            | Tr       | Ls         |                            | nod hd, amor-blky, microxln, arg i.p., lam, strkd blk i.p.,                                                           | ,                                                |
|            |          |            |                            |                                                                                                                       |                                                  |
| 1990       | 90       | Clst       | a.a.                       |                                                                                                                       |                                                  |
|            | 10       | Ls         | a.a.                       |                                                                                                                       |                                                  |
|            |          |            |                            |                                                                                                                       |                                                  |
| 2000       | 90       | Clst       | a.a.                       |                                                                                                                       |                                                  |
|            | 10       | Ls         | a.a.                       |                                                                                                                       |                                                  |
| 2010       | 70       | Clst       |                            | h gry, dk-olv gry, mod hd, amor-blky, non-slily calc,                                                                 |                                                  |
|            | 20       | T.o.       |                            | nic, Tr Glauc i.p.                                                                                                    | +                                                |
|            | 30<br>T- | Ls         | a.a.                       | from any right own a plant file. Other and the first                                                                  | +                                                |
|            | Tr       | Sst        |                            | , frm, occ wh-lt gry, r clr v f lse Qtz gr, rndd, Spher,<br>wh-lt gry, fri calc cmt Mtrx, arg i.p., Tr Glauc, Tr Carb |                                                  |



Doc. No. 2022-013511

Valid from: Dec 2022 Rev. no.: 0



|            |        |       | C                                                                                               | UTTINGS DESCRIPTION                                                                             | Page 6 of 28           |
|------------|--------|-------|-------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|------------------------|
| Country:   | Norway | 7     | Area:                                                                                           | Northern North Sea                                                                              | Field: Cambozola       |
| Well no:   | NO 34/ | 9-1 S | Company: Equinor Energy AS 35% (operator), Longboat Energy AS 2<br>Norway AS 20%, Petoro AS 20% |                                                                                                 | 25%, Spirit Energy     |
| RKB:       | 30 met | ers   | Geologist:                                                                                      | J. Alme, M. Vanhatalo, J. D. Jackson, A. G. Hesthagen                                           |                        |
| Hole size: | 17 ½"  |       |                                                                                                 |                                                                                                 | Date: 13.04-01.06.2022 |
|            |        |       |                                                                                                 | Lithological Description                                                                        | Remarks                |
| Depth      | Lith.  | Rock  |                                                                                                 | olour, grain size, sorting, roundness, matrix, cementation,                                     | Shows, cavings, mud    |
| (m RKB)    | (%)    | name  | hardness, so                                                                                    | ed.structures, accessories, fossils, porosity, contamination                                    | additives, etc.        |
| 2020       | 60     | Clst  |                                                                                                 | gry, dk-olv gry, mod hd, amor-blky, non-slily calc,                                             |                        |
|            | -      | -     |                                                                                                 | ic, Tr Glauc i.p.                                                                               |                        |
|            | 40     | Ls    |                                                                                                 | occ wh-lt gry, mod hd, amor-blky, microxln, arg i.p.,<br>k i.p., occ mott brn                   |                        |
|            | Tr     | Sst   |                                                                                                 | frm, occ wh-lt gry, r clr v f lse Qtz gr, rndd, Spher,                                          |                        |
|            |        |       | mod-wl srt, v<br>Mat                                                                            | vh-lt gry, fri, calc cmt Mtrx, arg i.p., Tr Glauc, Tr Carb                                      |                        |
| 2030       | 100    | Clst  | a.a.                                                                                            |                                                                                                 |                        |
| 2030       | Tr     | Ls    | a.a.                                                                                            |                                                                                                 |                        |
|            |        |       |                                                                                                 |                                                                                                 |                        |
| 2040       | 80     | Clst  | a.a.                                                                                            |                                                                                                 |                        |
|            | 20     | Ls    | a.a.                                                                                            |                                                                                                 |                        |
|            | Tr     | Sst   | a.a.                                                                                            |                                                                                                 |                        |
|            |        |       |                                                                                                 |                                                                                                 |                        |
| 2050       | 90     | Clst  | a.a.                                                                                            |                                                                                                 |                        |
|            | Tr     | Ls    | a.a.                                                                                            |                                                                                                 |                        |
|            | 10     | Sst   | a.a.                                                                                            |                                                                                                 |                        |
| 2060       | 90     | Clst  |                                                                                                 |                                                                                                 |                        |
| 2000       | 10     | Ls    | a.a.<br>a.a.                                                                                    |                                                                                                 |                        |
|            | Tr     | Sst   | a.a.                                                                                            |                                                                                                 |                        |
|            | 11     | DSL   | d.d.                                                                                            |                                                                                                 |                        |
| 2070       | 100    | Clst  | a.a.                                                                                            |                                                                                                 |                        |
|            | Tr     | Ls    | a.a.                                                                                            |                                                                                                 |                        |
| 2080       | 80     | Clst  |                                                                                                 | y, mod brn, dk-olv gry, mod hd, amor-blky, slily calc, ic, Pyr, Glauc i.p.                      |                        |
|            | 10     | Ls    |                                                                                                 | nsh gry i.p., mod hd, amor-blky, microxln, arg i.p.,                                            |                        |
|            | 10     | Sst   | m-brnsh gry,                                                                                    | frm, occ wh-lt gry, r clr v f lse Qtz gr, rndd, Spher,                                          |                        |
|            |        |       | mod-wl srt, v<br>Mat                                                                            | vh-lt gry, fri, calc cmt Mtrx, arg i.p., Tr Glauc, Tr Carb                                      |                        |
| 2090       | 90     | Clst  | a.a.                                                                                            |                                                                                                 |                        |
| -070       | 10     | Sst   | a.a.                                                                                            |                                                                                                 |                        |
|            |        |       |                                                                                                 |                                                                                                 |                        |
| 2100       | 80     | Clst  |                                                                                                 | -olv gry, occ mod brn, gnsh gry i.p., mod hd, amor-<br>le, slty, micromic, Pyr i.p., Glauc i.p. |                        |
|            | 20     | Ls    | a.a.                                                                                            |                                                                                                 |                        |
|            | Tr     | Sst   | a.a.                                                                                            |                                                                                                 |                        |
|            | +      | 1     |                                                                                                 |                                                                                                 |                        |



Doc. No. 2022-013511

Valid from: Dec 2022 Rev. no.: 0



|                  |              |              | C                               | CUTTINGS DESCRIPTION                                                                                                       | Page          | 7 of 28                             |
|------------------|--------------|--------------|---------------------------------|----------------------------------------------------------------------------------------------------------------------------|---------------|-------------------------------------|
| Country:         | Norway       | 7            | Area:                           | Northern North Sea                                                                                                         | Field:        | Cambozola                           |
| Well no:         | NO 34/       | 9-1 S        | Company:                        | Equinor Energy AS 35% (operator), Longboat Energy AS<br>Norway AS 20%, Petoro AS 20%                                       | 25%, Sp       | pirit Energy                        |
| RKB:             | 30 met       | ers          | Geologist:                      | J. Alme, M. Vanhatalo, J. D. Jackson, A. G. Hesthagen                                                                      |               |                                     |
| Hole size:       | 17 ½"        |              |                                 |                                                                                                                            | Date:         | 13.04-01.06.2022                    |
|                  |              |              |                                 | Lithological Description                                                                                                   |               | Remarks                             |
| Depth<br>(m RKB) | Lith.<br>(%) | Rock<br>name |                                 | colour, grain size, sorting, roundness, matrix, cementation, sed.structures, accessories, fossils, porosity, contamination |               | vs, cavings, mud<br>additives, etc. |
| 2110             | 90           | Clst         | m-dk grv. dl                    | k-olv gry, occ mod brn, gnsh gry i.p., mod hd, amor-                                                                       | Т             |                                     |
|                  |              |              |                                 | alc, slty, micromic, Pyr i.p., Glauc i.p.                                                                                  |               |                                     |
|                  | 10           | Ls           |                                 | rnsh gry i.p., mod hd, amor-blky, microxln, arg i.p.,                                                                      |               |                                     |
| 2120             | 100          | Clst         | a.a.                            |                                                                                                                            | +-            |                                     |
| 2120             | Tr           | Ls           | a.a.                            |                                                                                                                            | +             |                                     |
|                  |              | 4.00         | 4.44.                           |                                                                                                                            | +             |                                     |
| 2130             | 100          | Clst         | a.a.                            |                                                                                                                            | $\top$        |                                     |
| 2150             | 100          | Ls           | a.a.                            |                                                                                                                            | +             |                                     |
| 2140             | 90           | Clst         |                                 |                                                                                                                            | $\overline{}$ |                                     |
|                  | 10           | Ls           | a.a.                            |                                                                                                                            | +-            |                                     |
|                  |              |              | a.a.                            |                                                                                                                            | $\overline{}$ |                                     |
| 2150             | 80           | Clst         | a.a.                            |                                                                                                                            | $\overline{}$ |                                     |
|                  | 20           | Ls           | a.a.                            |                                                                                                                            | t             |                                     |
|                  |              |              |                                 |                                                                                                                            | 1             |                                     |
| 2160             | 70           | Clst         | a.a.                            |                                                                                                                            |               |                                     |
|                  | 30           | Ls           | a.a.                            |                                                                                                                            |               |                                     |
|                  |              |              |                                 |                                                                                                                            |               |                                     |
| 2170             | 90           | Clst         | Glauc i.p.                      | ce gnsh gry, mod hd, amor-blky, cale, slty, Pyr i.p.,                                                                      |               |                                     |
|                  | 10           | Ls           | wh-lt gry, pa<br>arg i.p., strk | a yelsh or-brnsh gry i.p., mod hd, amor-blky, microxln,<br>d blk i.p.                                                      |               |                                     |
| 2180             | 100          | Clst         | a.a.                            |                                                                                                                            |               |                                     |
|                  |              |              |                                 |                                                                                                                            |               |                                     |
| 2190             | 90           | Clst         | a.a.                            |                                                                                                                            |               |                                     |
|                  | 10           | Ls           | a.a.                            |                                                                                                                            |               |                                     |
|                  |              |              |                                 |                                                                                                                            |               |                                     |
| 2200             | 90           | Clst         | m-dk gry, ol<br>slty, Pyr i.p.  | v gry-olv blk, occ gnsh gry, mod hd, amor-blky, calc,<br>, Glauc i.p.                                                      |               |                                     |
|                  | 10           | Ls           | a.a.                            |                                                                                                                            |               |                                     |
| 2210             | 100          | Clst         | a.a.                            |                                                                                                                            |               |                                     |
|                  |              |              |                                 |                                                                                                                            |               |                                     |
| 2220             | 90           | Clst         | a.a.                            |                                                                                                                            |               |                                     |
|                  | 10           | Ls           | a.a.                            |                                                                                                                            |               |                                     |
| 2230             | 100          | Clst         | a.a.                            |                                                                                                                            | +-            |                                     |
|                  | Tr           | Ls           | a.a.                            |                                                                                                                            |               |                                     |
|                  | 1            |              |                                 |                                                                                                                            |               |                                     |
| 2240             | 100          | Clst         | a.a.                            |                                                                                                                            |               |                                     |
|                  |              |              |                                 |                                                                                                                            | T             |                                     |



Doc. No. 2022-013511

Valid from: Dec 2022 Rev. no.: 0



|            |         |      | (            | CUTTINGS DESCRIPTION                                                                 | Page 8 of 28          |
|------------|---------|------|--------------|--------------------------------------------------------------------------------------|-----------------------|
| Country:   | Norway  | /    | Area:        | Northern North Sea                                                                   | Field: Cambozola      |
| Well no:   | NO 34/  |      | Company:     | Equinor Energy AS 35% (operator), Longboat Energy AS<br>Norway AS 20%, Petoro AS 20% |                       |
| RKB:       | 30 met  | ers  | Geologist:   | J. Alme, M. Vanhatalo, J. D. Jackson, A. G. Hesthagen                                |                       |
| Hole size: | 17 1/2" |      |              |                                                                                      | Date: 13.04-01.06.202 |
|            |         |      |              | Lithological Description                                                             | Remarks               |
| Depth      | Lith.   | Rock | Mod.lith,    | colour, grain size, sorting, roundness, matrix, cementation,                         | Shows, cavings, mud   |
| (m RKB)    | (%)     | name |              | sed.structures, accessories, fossils, porosity, contamination                        | additives, etc.       |
|            |         |      |              |                                                                                      |                       |
| 2250       | 100     | Clst |              | olv gry-olv blk, occ gnsh gry, mod hd, amor-blky, cale,<br>p., Glauc i.p.            |                       |
|            | Tr      | Ls   |              | , mod hd, amor-blky, microxln, arg, strkd blk i.p.                                   |                       |
|            |         |      | ,            | , , , , , , , , , , , , , , , , , , , ,                                              |                       |
| 2260       | 100     | Clst | a.a.         |                                                                                      |                       |
| 2200       | 100     |      |              |                                                                                      |                       |
| 2270       | 100     | Clst | a.a.         |                                                                                      |                       |
| 2270       | Tr      | Ls   | a.a.         |                                                                                      |                       |
|            | ***     | Lo   | a.a.         |                                                                                      |                       |
| 2280       | 100     | Clst | a.a.         |                                                                                      | +                     |
| 2200       | Tr      | Ls   | a.a.         |                                                                                      |                       |
|            | 11      | LS   | a.a.         |                                                                                      | +                     |
| 2290       | 100     | Clst | a.a.         |                                                                                      | +                     |
| 2290       | Tr      | Ls   |              |                                                                                      |                       |
|            | 11      | LS   | a.a.         |                                                                                      |                       |
| 2200       | 100     | Clat |              |                                                                                      |                       |
| 2300       | 100     | Clst | a.a.         |                                                                                      |                       |
| 2210       | 100     | Clst |              |                                                                                      |                       |
| 2310       | 100     |      | a.a.         |                                                                                      |                       |
|            | Tr      | Ls   | a.a.         |                                                                                      | +                     |
| 2320       | 100     |      | 0.0          |                                                                                      | +                     |
| 2320       | 100     |      | a.a.         |                                                                                      | +                     |
| 2220       | 100     |      | 41           | and have be such our modeled owner billion and a observer                            |                       |
| 2330       | 100     |      | m-ak gry, r  | nod brn, lt-gnsh gry, mod hd, amor-blky, calc, slty                                  |                       |
| 2240       | 100     | Clar |              |                                                                                      |                       |
| 2340       | 100     | Clst | a.a.         |                                                                                      |                       |
|            | Tr      | Ls   | a.a.         |                                                                                      |                       |
| 2250       | 100     | CI . |              |                                                                                      |                       |
| 2350       | 100     | Clst | a.a.         |                                                                                      |                       |
|            | Tr      | Ls   | wh-lt gry, v | pa gn, pa yelsh or, mod hd, brit, amor-blky, microxln                                |                       |
| 2260       | 100     |      |              |                                                                                      | -                     |
| 2360       | 100     |      | a.a.         |                                                                                      | -                     |
| 2250       | 100     | CIL  | - 11         |                                                                                      | -                     |
| 2370       | 100     | Clst |              | olv gry-olv blk, mod hd, amor-blky, calc, slty                                       |                       |
|            | Tr      | Ls   | it-brnsh gry | , mod hd, amor-blky, microxln, arg                                                   |                       |
|            | 105     |      |              |                                                                                      |                       |
| 2380       | 100     | 1    | a.a.         |                                                                                      |                       |
|            |         |      |              |                                                                                      |                       |
| 2390       | 100     | Clst | a.a.         |                                                                                      | 1                     |
|            | Tr      | Ls   | a.a.         |                                                                                      |                       |
|            |         |      |              |                                                                                      |                       |
|            | 1       | 1    | 1            |                                                                                      | 1                     |



Doc. No. 2022-013511

Valid from: Dec 2022 Rev. no.: 0



|            |                                                  |       | (                               | CUTTINGS DESCRIPTION                                          | Page 9 of 28           |  |  |  |
|------------|--------------------------------------------------|-------|---------------------------------|---------------------------------------------------------------|------------------------|--|--|--|
| Country:   |                                                  |       | lorway Area: Northern North Sea |                                                               |                        |  |  |  |
| Well no:   | NO 34/9                                          | 9-1 S | 25%, Spirit Energy              |                                                               |                        |  |  |  |
| RKB:       | 30 met                                           | ers   | Geologist:                      |                                                               |                        |  |  |  |
| Hole size: | 17 ½"                                            |       |                                 |                                                               | Date: 13.04-01.06.2022 |  |  |  |
|            |                                                  |       |                                 | Lithological Description                                      | Remarks                |  |  |  |
| Depth      | Lith.                                            | Rock  | Mod.lith,                       | colour, grain size, sorting, roundness, matrix, cementation,  | Shows, cavings, mud    |  |  |  |
| (m RKB)    | (%)                                              | name  | hardness,                       | sed.structures, accessories, fossils, porosity, contamination | additives, etc.        |  |  |  |
|            |                                                  |       |                                 |                                                               |                        |  |  |  |
| 2400       | 100                                              | Clst  |                                 | lv gry-olv blk, mod hd, amor-blky, calc, slty                 |                        |  |  |  |
|            |                                                  |       | lt-brnsh gry                    | , mod hd, amor-blky, microxln, arg                            |                        |  |  |  |
|            | Tr                                               | Ls    | a.a.                            |                                                               |                        |  |  |  |
| 2410       | 100                                              |       |                                 |                                                               |                        |  |  |  |
| 2410       | 100                                              | Clst  | a.a.                            |                                                               |                        |  |  |  |
|            | Tr                                               | Ls    | a.a.                            |                                                               |                        |  |  |  |
| 2.420      | 100                                              | Cl    |                                 |                                                               |                        |  |  |  |
| 2420       | 100                                              | Clst  | a.a.                            |                                                               | +                      |  |  |  |
|            | Tr                                               | Ls    | a.a.                            |                                                               |                        |  |  |  |
| 2430       | 100                                              | Clst  | a.a.                            |                                                               |                        |  |  |  |
| 2430       | Tr                                               | Ls    | a.a.                            |                                                               |                        |  |  |  |
|            | ***                                              | La    | a.a.                            |                                                               |                        |  |  |  |
| 2440       | 100                                              | Clst  | a.a.                            |                                                               |                        |  |  |  |
| 2110       | 100                                              | Cist  | u.u.                            |                                                               |                        |  |  |  |
| 2450       | 100                                              | Clst  | a.a.                            |                                                               |                        |  |  |  |
|            | Tr                                               | Ls    | a.a.                            |                                                               |                        |  |  |  |
|            |                                                  |       |                                 |                                                               |                        |  |  |  |
| 2460       | 100                                              | Clst  | a.a.                            |                                                               |                        |  |  |  |
|            | Tr                                               | Ls    | a.a.                            |                                                               |                        |  |  |  |
|            |                                                  |       |                                 |                                                               |                        |  |  |  |
| 2470       | 90                                               | Clst  | a.a.                            |                                                               |                        |  |  |  |
|            | 10                                               | Ls    | a.a.                            |                                                               |                        |  |  |  |
|            |                                                  |       |                                 |                                                               |                        |  |  |  |
| 2480       | 100                                              | Clst  | a.a.                            |                                                               |                        |  |  |  |
|            | Tr                                               | Ls    | a.a.                            |                                                               |                        |  |  |  |
|            |                                                  |       |                                 |                                                               |                        |  |  |  |
| 2490       | 100                                              | Clst  | a.a.                            |                                                               |                        |  |  |  |
| 2500       | 100                                              | Clar  |                                 |                                                               |                        |  |  |  |
| 2500       | 100                                              | Clst  | a.a.                            |                                                               |                        |  |  |  |
|            | 1r                                               | Ls    | a.a.                            |                                                               |                        |  |  |  |
| 2510       | 100                                              | Clst  | 2.2                             |                                                               |                        |  |  |  |
| 2310       | Tr                                               | Ls    | a.a.<br>a.a.                    |                                                               | +                      |  |  |  |
|            | **                                               | L.3   | d.d.                            |                                                               | +                      |  |  |  |
| 2520       | 100                                              | Clst  | a.a.                            |                                                               | +                      |  |  |  |
| 2020       | Tr                                               | Ls    | a.a.                            |                                                               |                        |  |  |  |
| XXX        | <del>                                     </del> | T     |                                 |                                                               |                        |  |  |  |
| 2530       | 100                                              | Clst  | a.a.                            |                                                               |                        |  |  |  |
|            |                                                  |       |                                 |                                                               |                        |  |  |  |
| 2540       | 100                                              | Clst  | a.a.                            |                                                               |                        |  |  |  |
|            | Tr                                               | Ls    | a.a.                            |                                                               |                        |  |  |  |
|            | _                                                | _     |                                 |                                                               |                        |  |  |  |



Doc. No. 2022-013511

Valid from: Dec 2022 Rev. no.: 0



|            |             |      | (                       | CUTTINGS DESCRIPTION                                                                 | Page 10 of 28         |
|------------|-------------|------|-------------------------|--------------------------------------------------------------------------------------|-----------------------|
| Country:   | Norway      | 7    | Area:                   | Northern North Sea                                                                   | Field: Cambozola      |
| Well no:   | NO 34/9-1 S |      | Company:                | Equinor Energy AS 35% (operator), Longboat Energy AS<br>Norway AS 20%, Petoro AS 20% | 3 25%, Spirit Energy  |
| RKB:       | 30 met      | ers  | Geologist:              |                                                                                      |                       |
| Hole size: | 17 ½"       |      |                         |                                                                                      | Date: 13.04-01.06.202 |
|            |             |      |                         | Lithological Description                                                             | Remarks               |
| Depth      | Lith.       | Rock |                         | colour, grain size, sorting, roundness, matrix, cementation,                         | Shows, cavings, mud   |
| (m RKB)    | (%)         | name | hardness,               | sed.structures, accessories, fossils, porosity, contamination                        | additives, etc.       |
| 2550       | 100         | Clst | m dk gry-ol<br>micromic | v gry-olv blk, mod hd, amor-blky, slily calc, i.p. slty,                             |                       |
|            | Tr          | Ls   |                         | , mod hd, amor-blky, crumb, microxln, arg                                            |                       |
|            | 11          | LS   | it-briish gry           | , mod nd, amor-biky, crumb, microxin, arg                                            |                       |
| 2560       | 100         | Clst |                         |                                                                                      |                       |
| 2300       | Tr          | Ls   | a.a.                    |                                                                                      |                       |
|            | Ir          | LS   | a.a.                    |                                                                                      |                       |
| 2570       | 100         | Cler |                         |                                                                                      |                       |
| 2570       | 100         | Clst | a.a.                    |                                                                                      |                       |
| 2500       | 100         | CI . |                         |                                                                                      |                       |
| 2580       | 100         | Clst | a.a.                    |                                                                                      |                       |
|            | Tr          | Ls   | a.a.                    |                                                                                      |                       |
|            |             |      |                         |                                                                                      |                       |
| 2590       | 100         | Clst | a.a.                    |                                                                                      |                       |
|            | Tr          | Ls   | a.a.                    |                                                                                      |                       |
|            |             |      |                         |                                                                                      |                       |
| 2600       | 100         | Clst | a.a.                    |                                                                                      |                       |
|            | Tr          | Ls   | a.a.                    |                                                                                      |                       |
|            |             | -    |                         |                                                                                      |                       |
| 2610       | 100         | Clst | a.a.                    |                                                                                      |                       |
|            | Tr          | Ls   | a.a.                    |                                                                                      |                       |
|            |             |      |                         |                                                                                      |                       |
| 2620       | 100         | Clst | a.a.                    |                                                                                      |                       |
|            | Tr          | Ls   | a.a.                    |                                                                                      |                       |
|            |             |      |                         |                                                                                      |                       |
| 2630       | 100         | Clst | a.a.                    |                                                                                      |                       |
|            | Tr          | Ls   | a.a.                    |                                                                                      |                       |
|            |             |      |                         |                                                                                      |                       |
| 2640       | 100         | Clst | a.a.                    |                                                                                      |                       |
|            |             |      |                         |                                                                                      |                       |
| 2650       | 100         | Clst | a.a.                    |                                                                                      |                       |
|            | Tr          | Ls   | a.a.                    |                                                                                      |                       |
|            |             |      |                         |                                                                                      |                       |
| 2660       | 100         | Clst | a.a.                    |                                                                                      |                       |
|            | Tr          | Ls   | a.a.                    |                                                                                      |                       |
|            |             |      |                         |                                                                                      |                       |
| 2670       | 100         | Clst | a.a.                    |                                                                                      |                       |
|            | Tr          | Ls   | a.a.                    |                                                                                      |                       |
|            |             |      |                         |                                                                                      |                       |
| 2680       | 100         | Clst | a.a.                    |                                                                                      |                       |
|            | Tr          | Ls   | a.a.                    |                                                                                      |                       |
|            |             |      |                         |                                                                                      |                       |
|            |             |      |                         |                                                                                      |                       |



Doc. No. 2022-013511

Valid from: Dec 2022 Rev. no.: 0



|            |             |            | (            | CUTTINGS DESCRIPTION                                          | Page 11 of 28          |
|------------|-------------|------------|--------------|---------------------------------------------------------------|------------------------|
| Country:   | Norway      | /          | Area:        | Northern North Sea                                            | Field: Cambozola       |
| Well no:   | NO 34/9-1 S |            | Company:     | 25%, Spirit Energy                                            |                        |
| RKB:       | 30 met      | ers        | Geologist:   | J. Alme, M. Vanhatalo, J. D. Jackson, A. G. Hesthagen         |                        |
| Hole size: | 17 ½"       |            |              |                                                               | Date: 13.04-01.06.2022 |
|            |             |            |              | Lithological Description                                      | Remarks                |
| Depth      | Lith.       | Rock       |              | colour, grain size, sorting, roundness, matrix, cementation,  | Shows, cavings, mud    |
| (m RKB)    | (%)         | name       | nardness,    | sed.structures, accessories, fossils, porosity, contamination | additives, etc.        |
| 2000       | 100         | Clas       | T            |                                                               | Т                      |
| 2690       | 100<br>Tr   | Clst<br>Ls | a.a.         |                                                               |                        |
|            | Ir          | LS         | a.a.         |                                                               | +                      |
| 2700       | 100         | Clst       | a.a.         |                                                               |                        |
| 2700       | 100         | Cist       | a.a.         |                                                               |                        |
| 2710       | 100         | Clst       |              | lv gry-olv blk, mod hd, amor-blky, slily calc, i.p., slty,    |                        |
|            | _           |            | micromic     |                                                               |                        |
|            | Tr          | Ls         | it-brnsh gry | , mod hd, amor-blky, crumb, microxln, arg                     | -                      |
| 2720       | 100         | Clot       |              |                                                               |                        |
| 2720       | 100         | Clst       | a.a.         |                                                               |                        |
|            | Tr          | Ls         | a.a.         |                                                               |                        |
| 2730       | 100         | Clst       | a.a.         |                                                               |                        |
| 2130       | Tr          | Ls         | a.a.         |                                                               |                        |
|            | 11          | LS         | a.a.         |                                                               |                        |
| 2740       | 100         | Clst       | a.a.         |                                                               |                        |
| 2/10       | Tr          | Ls         | a.a.         |                                                               |                        |
|            |             |            |              |                                                               |                        |
| 2750       | 100         | Clst       | a.a.         |                                                               |                        |
|            | Tr          | Ls         | a.a.         |                                                               |                        |
|            |             |            |              |                                                               |                        |
| 2760       | 100         | Clst       | a.a.         |                                                               |                        |
|            | Tr          | Ls         | a.a.         |                                                               |                        |
|            |             |            |              |                                                               |                        |
| 2770       | 100         | Clst       | a.a.         |                                                               |                        |
|            |             |            |              |                                                               |                        |
| 2780       | 100         | Clst       | a.a.         |                                                               |                        |
|            | Tr          | Ls         | a.a.         |                                                               |                        |
| 2700       | 100         | Cl         |              |                                                               |                        |
| 2790       | 100         | Clst       | a.a.         |                                                               |                        |
|            | Tr          | Ls         | a.a.         |                                                               |                        |
| 2800       | 100         | Clot       | 0.0          |                                                               |                        |
| 2000       | Tr          | Clst<br>Ls | a.a.<br>a.a. |                                                               | +                      |
|            | 111         | La         | d.d.         |                                                               | +                      |
| 2810       | 100         | Clst       | a.a.         |                                                               |                        |
| 2010       | Tr          | Ls         | a.a.         |                                                               | 1                      |
|            |             | -          |              |                                                               | +                      |
| 2820       | 100         | Clst       | a.a.         |                                                               | 1                      |
|            | Tr          | Ls         | a.a.         |                                                               |                        |
|            |             |            |              |                                                               | 1                      |
| 2830       | 100         | Clst       | a.a.         |                                                               | 1                      |



Doc. No. 2022-013511

Valid from: Dec 2022 Rev. no.: 0



| Cambozola      |
|----------------|
| it Energy      |
|                |
| 3.04-01.06.202 |
| Remarks        |
| , cavings, mud |
| litives, etc.  |
|                |
|                |
|                |
|                |
|                |
|                |
|                |
|                |
|                |
|                |
|                |
|                |
|                |
|                |
|                |
|                |
|                |
|                |
|                |
|                |
|                |
|                |
|                |
|                |
|                |
|                |
|                |
|                |
|                |
|                |
|                |
|                |
|                |



Doc. No. 2022-013511

Valid from: Dec 2022 Rev. no.: 0



| CUTTINGS DESCRIPTION Page 13 of 28 |          |      |             |                                                                                                      |                        |  |
|------------------------------------|----------|------|-------------|------------------------------------------------------------------------------------------------------|------------------------|--|
| Country:                           | Norway   |      | Area:       | Northern North Sea                                                                                   | Field: Cambozola       |  |
| Well no:                           | NO 34/9  | -1 S | Company:    | Equinor Energy AS 35% (operator), Longboat Energy AS 25%, Spirit Energy Norway AS 20%, Petoro AS 20% |                        |  |
| RKB:                               | 30 meter | rs   | Geologist:  | J. Alme, M. Vanhatalo, J. D. Jackson, A. G. Hesthagen                                                |                        |  |
| Hole size:                         | 17 ½"    |      |             |                                                                                                      | Date: 13.04-01.06.2022 |  |
|                                    |          |      |             | Lithological Description                                                                             | Remarks                |  |
| Depth                              | Lith.    | Rock |             | colour, grain size, sorting, roundness, matrix, cementation,                                         | Shows, cavings, mud    |  |
| (m RKB)                            | (%)      | name | hardness, s | sed.structures, accessories, fossils, porosity, contamination                                        | additives, etc.        |  |

|      | Т   |      |                                                                                                                 |  |
|------|-----|------|-----------------------------------------------------------------------------------------------------------------|--|
| 2980 | 100 | Clst | m dk gry-dk gry, i.p. dk gnsh gry, mod hd, amor-blky, slily calc, i.p. slty, micromic                           |  |
|      | Tr  | Ls   | lt-brnsh gry, mod hd, amor-blky, crumb, microxln, arg                                                           |  |
| 2990 | 100 | Clst | a.a.                                                                                                            |  |
|      | Tr  | Ls   | a.a.                                                                                                            |  |
| 3000 | 100 | Clst | a.a.                                                                                                            |  |
|      | Tr  | Ls   | a.a.                                                                                                            |  |
| 3010 | 100 | Clst | a.a.                                                                                                            |  |
|      | Tr  | Ls   | a.a.                                                                                                            |  |
| 3020 | 100 | Clst | a.a.                                                                                                            |  |
|      | Tr  | Ls   | a.a.                                                                                                            |  |
| 3030 | 100 | Clst | m-dk gry, olv gry, occ gnsh gry, mod hd, amor-blky, slily calc, slty, micromic, Glauc i.p.                      |  |
|      | Tr  | Ls   | lt-brnsh gry, mod hd, amor-blky, microxln, arg, mott blk                                                        |  |
| 3040 | 100 | Clst | a.a.                                                                                                            |  |
| 5010 | Tr  | Ls   | â.â.                                                                                                            |  |
| 3050 | 100 | Clst | a.a.                                                                                                            |  |
| 3030 | Tr  | Ls   | a.a.                                                                                                            |  |
| 3060 | 100 | Clst | a.a.                                                                                                            |  |
| 3000 | 100 | Cist | d.d.                                                                                                            |  |
| 3070 | 100 | Clst | a.a.                                                                                                            |  |
| 3080 | 100 | Clst | a.a.                                                                                                            |  |
|      | Tr  | Ls   | a.a.                                                                                                            |  |
|      | Tr  | Sst  | clr, smky gry, v f, lse Qtz gr, rndd, Spher, wl srt                                                             |  |
| 3090 | 100 | Clst | a.a.                                                                                                            |  |
|      | Tr  | Ls   | a.a.                                                                                                            |  |
|      | Tr  | Sst  | a.a.                                                                                                            |  |
| 3100 | 100 | Clst | m-dk gry, olv gry, occ gnsh gry, lt blsh gry i.p., mod hd, amor-blky,<br>slily cale, slty, micromic, Glauc i.p. |  |



Doc. No. 2022-013511

Valid from: Dec 2022 Rev. no.: 0



|            |                 |            | (                  | CUTTINGS DESCRIPTION                                          | Page 14 of 28          |
|------------|-----------------|------------|--------------------|---------------------------------------------------------------|------------------------|
| Country:   | Country: Norway |            | Area:              | Northern North Sea                                            | Field: Cambozola       |
| Well no:   | NO 34/9         | 9-1 S      | 25%, Spirit Energy |                                                               |                        |
| RKB:       | 30 mete         | ers        | Geologist:         | J. Alme, M. Vanhatalo, J. D. Jackson, A. G. Hesthagen         |                        |
| Hole size: | 17 ½"           |            |                    |                                                               | Date: 13.04-01.06.2022 |
|            |                 |            |                    | Lithological Description                                      | Remarks                |
| Depth      | Lith.           | Rock       |                    | colour, grain size, sorting, roundness, matrix, cementation,  | Shows, cavings, mud    |
| (m RKB)    | (%)             | name       | hardness,          | sed.structures, accessories, fossils, porosity, contamination | additives, etc.        |
|            |                 | 1          |                    |                                                               | Т                      |
| 3110       | 90              | Clst       | m dlr omr o        | lv gry, occ gnsh gry, lt blsh gry i.p., mod hd, amor-blky.    | +                      |
| 3110       | 90              | Cist       |                    | ty, micromic, Glauc i.p.                                      | ,                      |
|            | 10              | Ls         |                    | , occ pa yelsh or, mod hd, amor-blky, microxln, arg,          | +                      |
|            |                 |            | mott blk           | , oce pa yelon or, moa na, anor oney, microani, ang,          |                        |
|            |                 |            |                    |                                                               |                        |
| 3120       | 100             | Clst       | a.a.               |                                                               |                        |
|            | Tr              | Ls         | a.a.               |                                                               |                        |
|            |                 |            |                    |                                                               |                        |
| 3130       | 100             | Clst       | a.a.               |                                                               |                        |
|            |                 |            |                    |                                                               |                        |
| 3140       | 100             | Clst       | a.a.               |                                                               |                        |
|            |                 |            |                    |                                                               |                        |
| 3150       | 100             | Clst       | a.a.               |                                                               |                        |
|            | Tr              | Ls         | a.a.               |                                                               |                        |
|            |                 |            |                    |                                                               |                        |
| 3160       | 100             | Clst       | a.a.               |                                                               |                        |
|            | Tr              | Ls         | a.a.               |                                                               |                        |
| 2170       | 100             | Clar       |                    |                                                               |                        |
| 3170       | 100<br>Tr       | Clst<br>Ls | a.a.               |                                                               |                        |
|            | 11              | LS         | a.a.               |                                                               | +                      |
| 3180       | 100             | Clst       | a.a.               |                                                               | +                      |
| 3100       | Tr              | Ls         | a.a.               |                                                               |                        |
|            | 11              | Lo         | a.a.               |                                                               |                        |
| 3190       | 100             | Clst       | a.a.               |                                                               |                        |
| 21,70      | Tr              | Ls         | a.a.               |                                                               |                        |
|            |                 |            |                    |                                                               |                        |
| 3200       | 100             | Clst       | a.a.               |                                                               |                        |
|            | Tr              | Ls         | a.a.               |                                                               |                        |
|            |                 |            |                    |                                                               |                        |
| 3210       | 100             | Clst       | a.a.               |                                                               |                        |
|            | Tr              | Ls         | a.a.               |                                                               |                        |
|            |                 |            |                    |                                                               |                        |
| 3220       | 100             | Clst       | a.a.               |                                                               |                        |
| 2220       | 100             | C1.        |                    |                                                               |                        |
| 3230       | 100             | Clst       | a.a.               |                                                               |                        |
| 2240       | 100             | Clar       |                    |                                                               |                        |
| 3340       | 100             | Clst       | a.a.               |                                                               |                        |
| 2250       | 100             | Clot       |                    |                                                               | +                      |
| 3350       | 100             | Clst       | a.a.               |                                                               |                        |
|            | Tr              | Ls         | a.a.               |                                                               |                        |



Doc. No. 2022-013511

Valid from: Dec 2022 Rev. no.: 0



|            | CUTTINGS DESCRIPTION Page 15 of 28                                                                                |                               |                                                                                                                                                                 |                                                                        |                        |  |  |  |
|------------|-------------------------------------------------------------------------------------------------------------------|-------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|------------------------|--|--|--|
| Country:   | Norway                                                                                                            | rway Area: Northern North Sea |                                                                                                                                                                 | Field: Cambozola                                                       |                        |  |  |  |
| Well no:   | NO 34/9-1 S Company: Equinor Energy AS 35% (operator), Longboat Energy AS 25%, Sp<br>Norway AS 20%, Petoro AS 20% |                               |                                                                                                                                                                 |                                                                        |                        |  |  |  |
| RKB:       | 30 meters                                                                                                         |                               | Geologist:                                                                                                                                                      | J. Alme, M. Vanhatalo, J. D. Jackson, A. G. Hesthagen                  |                        |  |  |  |
| Hole size: | 17 ½"                                                                                                             |                               |                                                                                                                                                                 |                                                                        | Date: 13.04-01.06.2022 |  |  |  |
|            |                                                                                                                   |                               |                                                                                                                                                                 | Lithological Description                                               | Remarks                |  |  |  |
| Depth      | Lith.                                                                                                             | Rock                          | Mod.lith, co                                                                                                                                                    | Mod.lith, colour, grain size, sorting, roundness, matrix, cementation, |                        |  |  |  |
| (m RKB)    | (%)                                                                                                               | name                          | Mod.lith, colour, grain size, sorting, roundness, matrix, cementation,<br>hardness, sed.structures, accessories, fossils, porosity, contamination additives, of |                                                                        |                        |  |  |  |

| 3260 | 90  | Clst | m-dk gry, olv gry, occ gnsh gry, lt blsh gry i.p., mod hd, amor-blky, slily calc, slty, micromic, Glauc i.p.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
|------|-----|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|      | 10  | Ls   | lt-brnsh gry, occ pa yelsh or, mod hd, amor-blky, microxln, arg,<br>mott blk                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
|      |     |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 3270 | 100 | Clst | a.a.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
|      | Tr  | Ls   | a.a.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
|      |     |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 3280 | 100 | Clst | a.a.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
|      | Tr  | Ls   | lt-brnsh gry, occ pa yelsh or, wh-v pa gn, mod hd, amor-blky,<br>microxln, arg i.p., mott blk                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
|      |     |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 3290 | 100 | Clst | a.a.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
|      | Tr  | Ls   | a.a.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
|      |     |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 3300 | 90  | Clst | a.a.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
|      | 10  | Ls   | a.a.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
|      |     |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 3310 | 100 | Clst |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 3320 | 100 | Clst | a.a.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| 3320 | Tr  | Ls   | a.a.<br>a.a.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
|      | Tr  | Sst  | clr, smky gry, v f, lse Qtz gr, rndd, Spher, mod-wl srt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
|      |     | Dat  | cii, siiky giy, v i, ise Qtz gi, iidd, Spilei, iidd-wi sit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| 3330 | 100 | Clst | a.a.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| 3330 | Tr  | Ls   | 8.3.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
|      | Tr  | Sst  | 8.8.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
|      | +   |      | The state of the s |  |
| 3340 | 100 | Clst | a.a.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| 5510 | Tr  | Ls   | a.a.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
|      | Tr  | Sst  | a.a.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
|      | +   |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 3350 | 100 | Clst | a.a.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
|      |     |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 3360 | 100 | Clst | a.a.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
|      | Tr  | Ls   | a.a.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
|      |     |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 3370 | 100 | Clst | a.a.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
|      |     |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 3380 | 100 | Clst | a.a.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
|      |     |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|      | 1   | 1    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |



Tr

Classification: Restricted

a.a. TD

Status: Final

Doc. No. 2022-013511

Valid from: Dec 2022 Rev. no.: 0



|            |             | Page 16 of 28 |                         |                                                                                              |                       |  |  |
|------------|-------------|---------------|-------------------------|----------------------------------------------------------------------------------------------|-----------------------|--|--|
| Country:   | Norway      | 7             | Area:                   | Northern North Sea                                                                           | Field: Cambozola      |  |  |
| Well no:   | NO 34/9-1 S |               | Company:                | Equinor Energy AS 35% (operator), Longboat Energy AS<br>Norway AS 20%, Petoro AS 20%         | 3 25%, Spirit Energy  |  |  |
| RKB:       | 30 met      | ers           | Geologist:              | J. Alme, M. Vanhatalo, J. D. Jackson, A. G. Hesthagen                                        |                       |  |  |
| Hole size: | 17 ½"       |               |                         |                                                                                              | Date: 13.04-01.06.202 |  |  |
|            |             |               |                         | Lithological Description                                                                     | Remarks               |  |  |
| Depth      | Lith.       | Rock          |                         | colour, grain size, sorting, roundness, matrix, cementation,                                 | Shows, cavings, much  |  |  |
| (m RKB)    | (%)         | name          | hardness,               | sed.structures, accessories, fossils, porosity, contamination                                | additives, etc.       |  |  |
| 3390       | 100         | Clst          | m-dk gry, o<br>micromic | olv gry-olv blk, mod hd, amor-blky, slily calc, slty,                                        |                       |  |  |
| 3400       | 90          | Clst          | a.a.                    |                                                                                              |                       |  |  |
|            | 10          | Ls            |                         | t-brnsh gry, occ pa yelsh or, wh-v pa gn, mod hd, amor-blky,<br>microxln, arg i.p., mott blk |                       |  |  |
| 3410       | 100         | Clst          | a.a.                    |                                                                                              |                       |  |  |
|            | Tr          | Ls            | a.a.                    |                                                                                              |                       |  |  |
|            | Tr          | Sst           | clr, smky g             | ry, v f, lse Qtz gr, rndd, Spher, wl srt                                                     |                       |  |  |
| 3420       | 100         | Clst          | a.a.                    |                                                                                              |                       |  |  |
| 3430       | 100         | Clst          | a.a.                    |                                                                                              |                       |  |  |
|            | Tr          | Ls            | a.a.                    |                                                                                              |                       |  |  |
| 3440       | 100         | Clst          | a.a.                    |                                                                                              |                       |  |  |
|            | Tr          | Ls            | a.a.                    |                                                                                              |                       |  |  |
| 3450       | 90          | Clst          | a.a.                    |                                                                                              |                       |  |  |
|            | 10          |               | a.a.                    |                                                                                              |                       |  |  |
| 3460       | 100         | Clst          | a.a.                    |                                                                                              |                       |  |  |
| C 100      | -00         |               |                         |                                                                                              |                       |  |  |



3550

Doc. No. 2022-013511

Valid from: Dec 2022 Rev. no.: 0



|            |           |            |                          | CUTTINGS DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                   | 17 of 28         |
|------------|-----------|------------|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|------------------|
| Country:   | Norwa     | ay         | Area:                    | Northern North Sea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                     | Cambozola        |
| Well no:   | NO 34     | 4/9-1 S    | Company:                 | Equinor Energy AS 35% (operator), Longboat Energy AS<br>Norway AS 20%, Petoro AS 20%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 25%, S <sub>J</sub> | pirit Energy     |
| RKB:       | 30 m      | eters      | Geologist:               | J. D. Jackson, A.G. Lauvås. E. Tvedt, M. Moslet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                     |                  |
| Hole size: | 12 1/4"   | x 13 ½"    |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Date:               | 13.04-01.06.2022 |
|            |           |            |                          | Lithological Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                     | Remarks          |
| Depth      | Lith.     | Rock       |                          | colour, grain size, sorting, roundness, matrix, cementation,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                     | ws, cavings, mud |
| (m RKB)    | (%)       | name       | hardness,                | sed.structures, accessories, fossils, porosity, contamination                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 8                   | dditives, etc.   |
|            | Τ         |            | 12 ¼" x 13               | 14" section                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Т                   |                  |
| 3463       | 100       | Clst       |                          | v gry-olv blk, mod hd, amor-blky, slily calc, slty,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                   |                  |
| 3403       | 100       | Cist       | micromic                 | v gry-orv bik, mod nd, amor-biky, smy cale, sity,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                     |                  |
|            | Tr        | Ls         | lt-brnsh gry,            | occ wh, mod hd, amor-blky, microxln, arg i.p., mott blk                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                     |                  |
|            | Tr        | Cmt        |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                     |                  |
| 2470       | 100       | Clat       |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                   |                  |
| 3470       | Tr        | Clst<br>Ls | a.a.                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | +                   |                  |
|            | _         |            | a.a.                     | -1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | +                   |                  |
|            | Tr        | Sst        |                          | sl, smky gry, v f-f, lse Qtz gr, sbrndd, Spher, mod-wl srt,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                     |                  |
|            |           |            |                          | nsh gry, fri, calc cmt Mtrx, arg i.p., occ Glauc, carb Mat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                     |                  |
|            |           |            | i.p., n/s                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                     |                  |
| 3480       |           | Clst       | a.a.                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                     |                  |
|            |           | Ls         | a.a.                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                     |                  |
|            |           | Sst        | a.a.                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                     |                  |
|            |           |            |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                     |                  |
| 2400       | 100       | Clar       |                          | and the second but are a billion of the selection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                   |                  |
| 3490       | 100       | Clst       | m-dk gry, of<br>micromic | v gry-olv blk, mod hd, amor-blky, slily calc, slty,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                     |                  |
|            | Tr        | Ls         | lt-brnsh gry,            | occ wh, mod hd, amor-blky, microxln, arg i.p., mott blk                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                     |                  |
|            | Tr        | Sst        | clr, trnsp-trn:          | sl, smky gry, v f-f, lse Qtz gr, sbrndd, Spher, mod-wl srt,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                     |                  |
|            |           |            | wh-lt gry, br            | nsh gry, fri, calc cmt Mtrx, arg i.p., occ Glauc, carb Mat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                     |                  |
|            |           |            | i.p.                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | _                   |                  |
| 3500       | 80        | Clst       | a.a.                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                   |                  |
| 3300       | 10        | Ls         | a.a.                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | _                   |                  |
|            | 10        | Sst        | a.a.<br>a.a.             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                   |                  |
|            | 10        | ost        | d.d.                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\vdash$            |                  |
| 3510       | 100       | Clst       | a.a.                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                     |                  |
|            | Tr        | Ls         | a.a.                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                     |                  |
|            | Tr        | Sst        | a.a.                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                     |                  |
| 2520       | 100       | Clat       | dle our also             | are already and help and help and a star or in the section of the | -                   |                  |
| 3520       | 100<br>Tr | Clst       |                          | ry-olv blk, mod hd, amor-blky, slily calc, slty, micromic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                   |                  |
|            | 11'       | Ls         | a.a.                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\vdash$            |                  |
| 3530       | 100       | Clst       | a.a.                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\vdash$            |                  |
|            |           |            |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                     |                  |
|            | -         |            |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                   |                  |
| 3540       | 100       | Clst       | a.a.                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                     |                  |
| 3340       | 100       | Ciat       | u.u.                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                     |                  |
|            |           |            | 1                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                   |                  |



Doc. No. 2022-013511

Valid from: Dec 2022 Rev. no.: 0



|                  |       |         | C                   | UTTINGS DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Page 18 c                                        |               |
|------------------|-------|---------|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|---------------|
| Country:         | Norwa |         | Area:               | Northern North Sea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Field: Car                                       |               |
| Well no:         |       | /9-1 S  | Company:            | Equinor Energy AS 35% (operator), Longboat Energy AS<br>Norway AS 20%, Petoro AS 20%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 25%, Spirit I                                    | Energy        |
| RKB:             | 30 mc |         | Geologist:          | J. D. Jackson, A.G. Lauvås. E. Tvedt, M. Moslet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | In                                               |               |
| Hole size:       | 12 ¼" | x 13 ½" |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                  | 04-01.06.2022 |
| D 4              | T 14  | -       | 26.183              | Lithological Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                  | marks         |
| Depth<br>(m RKB) | Lith. | Rock    |                     | lour, grain size, sorting, roundness, matrix, cementation,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                  | avings, mud   |
| (III KKD)        | (20)  | name    | nardness, see       | d.structures, accessories, fossils, porosity, contamination                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | additi                                           | ves, etc.     |
|                  | т —   | Ι       |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                  |               |
| 3560             | 90    | Clst    | dle ome hille o/o   | also heach our het biller cale visale aliterater                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                  |               |
| 3300             | 10    | Ls      | lt brnsh gry a/a    | , also brnsh gry, hd, blky, calc-v calc, slily slty                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | +                                                |               |
|                  | 10    | LS      | it offish gry a/a   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | +                                                |               |
| 3570             | 100   | Clst    | a.a.                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | +                                                |               |
| 3370             | Tr    | Ls      | a.a.                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | +                                                |               |
|                  | 111   | LS      | d.d.                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | +                                                |               |
| 3580             | 100   | Clst    | a.a.                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | +                                                |               |
| 3360             | Tr    | Ls      | a.a.                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                  |               |
|                  |       | Lo      | a.a.                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | +                                                |               |
| 3590             | 40    | Clst    | a.a.                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | +                                                |               |
| 3370             | 60    | Ls      |                     | h gry, blky, hd, microxln, slily sdy I.p., Glauc, slily arg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ,                                                |               |
|                  | 00    |         | Et gry it time      | in gry, oney, me, microsin, only only up., contact, only in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2                                                |               |
| 3600             | 90    | Clst    | a.a.                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <del>                                     </del> |               |
| 2000             | 10    | Ls      | a.a.                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | +                                                |               |
|                  |       |         |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                  |               |
| 3610             | 95    | Clst    | a.a.                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                  |               |
|                  | 5     | Ls      | a.a.                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                  |               |
|                  |       |         |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                  |               |
| 3620             | 90    | Clst    | dk gry, blk, a/a    | , also brnsh gry, hd, blky, calc-v calc, slily slty                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                  |               |
|                  | 10    | Ls      | lt gry - lt brnsh   | gry, blky, hd, microxln, slily sdy i.p., Glauc, slily arg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                  |               |
|                  |       |         |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                  |               |
| 3630             | 70    | Clst    | a.a.                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                  |               |
|                  | 30    | 1s      | a.a.                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                  |               |
|                  |       |         |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                  |               |
| 3640             | 70    | Clst    | a.a.                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                  |               |
|                  | 30    | Ls      | a.a.                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                  |               |
|                  |       |         |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                  |               |
| 3650             | 100   | Clst    | a.a.                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                  |               |
|                  | tr    | Ls      | a.a.                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                  |               |
|                  | Tr    | Sst     |                     | frm, fri, blky, vf, wl srt, wk calc cmt Glauc, slily slty,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                  |               |
|                  |       |         | n.v.p. n/s.         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                  |               |
|                  |       |         |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                  |               |
| 3660             | 100   | Clst    | a.a.                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                  |               |
| 2.000            | 0.0   | -       |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                  |               |
| 3670             | 90    | Clst    | a.a.                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | +                                                |               |
| 2/00             | 10    | Ls      | a.a.                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | +                                                |               |
| 3680             | 90    | Clst    | a.a.                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | +                                                |               |
|                  | 10    | Ls      | a.a.                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | +                                                |               |
| 2600             | 100   | Clet    | dle over to also to | the mod hat believe of the selection of the steep of the selection of the | +                                                |               |
| 3690             | 100   | Clst    |                     | lk, mod hd, blky, slily calc-calc, slily slty, micropyr,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                  |               |
|                  |       |         | micromic            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                  |               |



Doc. No. 2022-013511

Valid from: Dec 2022 Rev. no.: 0



|                  |         |         | CU            | JTTINGS DESCRIPTION                                                                   | Page 19 of 28                  |
|------------------|---------|---------|---------------|---------------------------------------------------------------------------------------|--------------------------------|
| Country:         | Norwa   |         | Area:         | Northern North Sea                                                                    | Field: Cambozola               |
| Well no:         | NO 34   | /9-1 S  | Company:      | Equinor Energy AS 35% (operator), Longboat Energy AS 2                                | 25%, Spirit Energy             |
|                  |         |         |               | Norway AS 20%, Petoro AS 20%                                                          |                                |
| RKB:             | 30 mc   |         | Geologist:    | J. D. Jackson, A.G. Lauvås. E. Tvedt, M. Moslet                                       | D 12 04 04 07 2022             |
| Hole size:       | 12 1/4" | x 13 ½" |               |                                                                                       | Date: 13.04-01.06.2022         |
| Donath           | Lith.   | Dools   | Mod lith and  | Lithological Description<br>our, grain size, sorting, roundness, matrix, cementation, | Remarks<br>Shows, cavings, mud |
| Depth<br>(m RKB) | (%)     | Rock    | hardness sed  | l.structures, accessories, fossils, porosity, contamination                           | additives, etc.                |
| (III KKD)        | (70)    | name    | naruness, see | isituctures, accessories, tossiis, porosity, contamination                            | additives, etc.                |
|                  | Tr      | Ls      | a.a.          |                                                                                       |                                |
|                  | Tr      | Sst     | a.a.          |                                                                                       |                                |
|                  | 11      | 221     | a.a.          |                                                                                       |                                |
| 3700             | 90      | Clst    | a.a.          |                                                                                       |                                |
| 3700             | 10      | Ls      | a.a.          |                                                                                       |                                |
|                  | Tr      | Sst     | a.a.          |                                                                                       |                                |
|                  | **      | 231     | a.a.          |                                                                                       |                                |
| 3710             | 90      | Clst    | a.a.          |                                                                                       | <del> </del>                   |
| 3710             | 10      | Ls      | a.a.          |                                                                                       |                                |
|                  | Tr      | Sst     | a.a.          |                                                                                       |                                |
|                  | ··      |         |               |                                                                                       |                                |
| 3720             | 80      | Clst    | a.a.          |                                                                                       |                                |
| 0,20             | 10      | Ls      | a.a.          |                                                                                       |                                |
|                  | 10      | Sst     | a.a.          |                                                                                       |                                |
|                  |         |         |               |                                                                                       |                                |
| 3730             | 90      | Clst    | a.a.          |                                                                                       |                                |
|                  | 10      | Ls      | a.a.          |                                                                                       |                                |
|                  | Tr      | Sst     | a.a.          |                                                                                       |                                |
| 3740             | 90      | Clst    |               | k, mod hd, blky, slily calc-calc, slily slty, micropyr,                               |                                |
|                  |         |         | micromic      | .,,,,,,,,,                                                                            |                                |
|                  | 10      | Ls      |               | ry, blky, hd, microxln, slily sdy i.p., Glauc, slily arg                              |                                |
|                  | Tr      | Sst     |               | frm, fri, blky, vf, wl srt, wk calc cmt, Glauc, slily slty,                           |                                |
|                  |         |         | n.v.p., n/s.  |                                                                                       |                                |
|                  |         |         |               |                                                                                       |                                |
| 3750             | 90      | Clst    | a.a.          |                                                                                       |                                |
|                  | 10      | Ls      | a.a.          |                                                                                       |                                |
|                  | Tr      | Sst     | a.a.          |                                                                                       |                                |
|                  |         |         |               |                                                                                       |                                |
| 3760             | 70      | Clst    | a.a.          |                                                                                       |                                |
|                  | 30      | Ls      | a.a.          |                                                                                       |                                |
|                  | Tr      | Sst     | a.a.          |                                                                                       |                                |
|                  |         |         |               |                                                                                       |                                |
| 3770             | 90      | Clst    | a.a.          |                                                                                       |                                |
|                  | 10      | Ls      | a.a.          |                                                                                       |                                |
|                  | Tr      | Sst     | a.a.          |                                                                                       |                                |
|                  |         |         |               |                                                                                       | <b></b>                        |
| 3780             | 90      | Clst    | a.a.          |                                                                                       |                                |
|                  | 10      | Ls      | a.a.          |                                                                                       | <u> </u>                       |
|                  | Tr      | Sst     | a.a.          |                                                                                       | <u> </u>                       |
|                  |         |         |               |                                                                                       | <b></b>                        |
| 3790             | 70      | Clst    | a.a.          |                                                                                       | <u> </u>                       |
|                  | 20      | Ls      | a.a.          |                                                                                       |                                |



Doc. No. 2022-013511

Valid from: Dec 2022 Rev. no.: 0



|                  |              |              |                                                   | CUTTINGS DESCRIPTION                                                                                                        | Page 20 of 28                          |
|------------------|--------------|--------------|---------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
| Country:         | Norwa        |              | Area:                                             | Northern North Sea                                                                                                          | Field: Cambozola                       |
| Well no:         | NO 34        | /9-1 S       | Company:                                          | Equinor Energy AS 35% (operator), Longboat Energy AS<br>Norway AS 20%, Petoro AS 20%                                        | 25%, Spirit Energy                     |
| RKB:             | 30 mc        |              | Geologist:                                        | J. D. Jackson, A.G. Lauvås. E. Tvedt, M. Moslet                                                                             |                                        |
| Hole size:       | 12 1/4"      | x 13 ½"      |                                                   |                                                                                                                             | Date: 13.04-01.06.2022                 |
|                  |              |              |                                                   | Lithological Description                                                                                                    | Remarks                                |
| Depth<br>(m RKB) | Lith.<br>(%) | Rock<br>name | Mod.lith, o<br>hardness,                          | colour, grain size, sorting, roundness, matrix, cementation, sed.structures, accessories, fossils, porosity, contamination  | Shows, cavings, mud<br>additives, etc. |
|                  | 10           | Sst          | a.a.                                              |                                                                                                                             |                                        |
| 3800             | 80           | Clst         | a.a.                                              |                                                                                                                             |                                        |
|                  | 10           | Ls           | a.a.                                              |                                                                                                                             |                                        |
|                  | 10           | Sst          | a.a.                                              |                                                                                                                             |                                        |
| 3810             | 100          | Clst         | a.a.                                              |                                                                                                                             |                                        |
|                  | Tr           | Ls           | a.a.                                              |                                                                                                                             |                                        |
|                  | Tr           | Sst          | a.a.                                              |                                                                                                                             |                                        |
| 3820             | 70           | Clst         | a.a.                                              |                                                                                                                             |                                        |
|                  | 20           | Ls           | a.a.                                              |                                                                                                                             |                                        |
|                  | 10           | Sst          | lt-m gry, frm,<br>slily arg, n.v                  | , fri, amor-blky, v f-f, mod wl srt, calc cmt, Glauc, slty, .p., n/s.                                                       |                                        |
| 3830             | 90           | Clst         | a.a.                                              |                                                                                                                             |                                        |
| 5050             | 10           | Ls           | a.a.                                              |                                                                                                                             |                                        |
|                  | Tr           | Sst          | a.a.                                              |                                                                                                                             |                                        |
| 3840             | 100          |              |                                                   | blk, gnsh blk-blk, mod hd, amor-blky, calc, slty,                                                                           |                                        |
|                  | 10           |              |                                                   | blky, occ pa yelsh or, mod hd, microxln, lam i.p., occ i.p.                                                                 |                                        |
|                  | Tr           |              | clr, trnsp-trns<br>wh-lt gry, bri<br>n.v.p., n/s. | sl, smky gry, lse Qtz gr, v f-f, sbrndd, Spher, mod-wl srt,<br>nsh gry, fri, calc cmt Mtrx, Glauc, occ slty, carb Mat i.p., |                                        |
| 3850             | 70           | Clst         | a.a.                                              |                                                                                                                             |                                        |
|                  | 30           | Ls           | a.a.                                              |                                                                                                                             |                                        |
|                  | 10           | Sst          | a.a.                                              |                                                                                                                             |                                        |
| 3860             | 100          | Clst         | a.a.                                              |                                                                                                                             |                                        |
|                  | Tr           | Ls           | a.a.                                              |                                                                                                                             |                                        |
|                  | Tr           | Sst          | a.a.                                              |                                                                                                                             |                                        |
| 3870             | 100          | Clst         | a.a.                                              |                                                                                                                             |                                        |
|                  | Tr           | Ls           | a.a.                                              |                                                                                                                             |                                        |
|                  | Tr           | Sst          | a.a.                                              |                                                                                                                             |                                        |
| 3880             | 70           | Clst         | a.a.                                              |                                                                                                                             |                                        |
|                  | 30           | Ls           | a.a.                                              |                                                                                                                             |                                        |
|                  | Tr           | Sst          | a.a.                                              |                                                                                                                             |                                        |
|                  |              |              |                                                   |                                                                                                                             |                                        |



Doc. No. 2022-013511

Valid from: Dec 2022 Rev. no.: 0



|                  |              |            |               | CUTTINGS DESCRIPTION                                                                                                          | Page 21 of 28                          |
|------------------|--------------|------------|---------------|-------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
| Country:         | Norwa        | ıy         | Area:         | Northern North Sea                                                                                                            | Field: Cambozola                       |
| Well no:         | NO 34        | l/9-1 S    | Company:      | Equinor Energy AS 35% (operator), Longboat Energy AS                                                                          | 25%, Spirit Energy                     |
|                  |              |            |               | Norway AS 20%, Petoro AS 20%                                                                                                  |                                        |
| RKB:             | 30 mc        |            | Geologist:    | J. D. Jackson, A.G. Lauvås. E. Tvedt, M. Moslet                                                                               | - 12 01 01 07 2022                     |
| Hole size:       | 12 1/4"      | x 13 ½"    |               |                                                                                                                               | Date: 13.04-01.06.2022                 |
| Donath           | T Sale       | Dl-        | 3.6 - 4 Uab   | Lithological Description                                                                                                      | Remarks                                |
| Depth<br>(m RKB) | Lith.<br>(%) | Rock       |               | colour, grain size, sorting, roundness, matrix, cementation,<br>sed.structures, accessories, fossils, porosity, contamination | Shows, cavings, mud<br>additives, etc. |
| (III KKD)        | (70)         | name       | naruness,     | sed.structures, accessories, tossits, porosity, contamination                                                                 | additives, etc.                        |
| 3890             | 90           | Clst       |               |                                                                                                                               | Т                                      |
| 3090             | 10           | Ls         | a.a.<br>a.a.  |                                                                                                                               |                                        |
|                  | 10           | LS         | a.a.          |                                                                                                                               |                                        |
| 3900             | 100          | Clst       | a.a.          |                                                                                                                               |                                        |
| 3900             | Tr           | Ls         | a.a.<br>a.a.  |                                                                                                                               |                                        |
|                  | Tr           | Sst        | a.a.          |                                                                                                                               |                                        |
|                  | 11           | DSL        | a.a.          |                                                                                                                               |                                        |
| 3910             | 100          | Clst       | a.a.          |                                                                                                                               |                                        |
| 3710             | Tr           | Ls         | a.a.          |                                                                                                                               | +                                      |
|                  | Tr           | Sst        | a.a.          |                                                                                                                               |                                        |
|                  |              | Dat        | a.a.          |                                                                                                                               | <del> </del>                           |
| 3920             | 80           | Clst       | a.a.          |                                                                                                                               |                                        |
| 3720             | 20           | Ls         | a.a.          |                                                                                                                               |                                        |
|                  | Tr           | Sst        | a.a.          |                                                                                                                               | <del> </del>                           |
|                  |              | D.A.       |               |                                                                                                                               |                                        |
| 3930             | 100          | Clst       | a.a.          |                                                                                                                               |                                        |
| 5,50             | Tr Ls a.a.   |            |               |                                                                                                                               | <del> </del>                           |
|                  |              | 2.5        |               |                                                                                                                               |                                        |
| 3940             | 100          | Clst       | dk gry to oly | blk, gnsh blk-blk, mod hd, amor-blky, calc, slty,                                                                             |                                        |
| 57.0             | 100          |            | micromic      | on, gam out out, mount, and only, care, only,                                                                                 |                                        |
|                  | Tr           | Sst        |               | sl, smky gry, lse Qtz gr, v f-f, sbrndd, Spher, mod-wl srt,                                                                   |                                        |
|                  |              |            |               | nsh gry, fri, calc cmt Mtrx, Glauc, occ slty, carb Mat i.p.,                                                                  |                                        |
|                  |              |            | n.v.p., n/s.  |                                                                                                                               |                                        |
|                  |              |            |               |                                                                                                                               |                                        |
| 3950             | 100          | Clst       | a.a.          |                                                                                                                               |                                        |
|                  | Tr           | Ls         | lt-brnsh gry, | blky, occ pa yelsh or, mod hd, microxln, lam i.p., occ                                                                        |                                        |
|                  |              |            | arg, mott blk |                                                                                                                               |                                        |
|                  | Tr           | Sst        |               | sl, smky gry, lse Qtz gr, v f-f, sbrndd, Spher, mod-wl srt,                                                                   |                                        |
|                  |              |            |               | nsh gry, fri, calc cmt Mtrx, Glauc, occ slty, carb Mat i.p.,                                                                  |                                        |
|                  | _            |            | n.v.p., n/s.  |                                                                                                                               |                                        |
| 20.00            | 00           | CI.        |               |                                                                                                                               |                                        |
| 3960             | 90           | Clst       | a.a.          |                                                                                                                               |                                        |
|                  | 10           | Ls         | a.a.          |                                                                                                                               |                                        |
| 2070             | 00           | Clat       |               |                                                                                                                               |                                        |
| 3970             | 90           | Clst       | a.a.          |                                                                                                                               |                                        |
|                  | 10           | l.s        | я.я.          |                                                                                                                               |                                        |
| 2000             | 100          | Clet       |               |                                                                                                                               | +                                      |
| 3980             | 100          | Clst       | a.a.          |                                                                                                                               | +                                      |
|                  | Tr           | Ls         | a.a.          |                                                                                                                               | +                                      |
| 2000             | 90           | Clet       |               |                                                                                                                               |                                        |
| 3990<br>B/U      | 10           | Clst<br>Ls | a.a.          |                                                                                                                               | 1                                      |
| B/U              | 10           | LS         | a.a.          |                                                                                                                               |                                        |



Doc. No. 2022-013511

Valid from: Dec 2022 Rev. no.: 0



|            | CUTTINGS DESCRIPTION Page 22 of 28 |           |               |                                                                       |                    |                     |  |  |  |  |
|------------|------------------------------------|-----------|---------------|-----------------------------------------------------------------------|--------------------|---------------------|--|--|--|--|
| Country:   | Norwa                              | y         | Area:         | Northern North Sea                                                    | Field:             | Cambozola           |  |  |  |  |
| Well no:   | NO 34                              | /9-1 S    | Company:      | Equinor Energy AS 35% (operator), Longboat Energy AS                  | 25%, Spirit Energy |                     |  |  |  |  |
|            |                                    |           |               | lorway AS 20%, Petoro AS 20%                                          |                    |                     |  |  |  |  |
| RKB:       | 30 me                              | ters      | Geologist:    | J. D Jackson, A.G. Lauvås. E. Tvedt, M. Moslet                        |                    |                     |  |  |  |  |
| Hole size: | 10 5/8'                            | " x 12 ¼" |               |                                                                       | Date:              | 13.04-01.06.2022    |  |  |  |  |
|            |                                    |           |               | Lithological Description                                              |                    |                     |  |  |  |  |
| Depth      | Lith.                              | Rock      | Mod.lith, col | od.lith, colour, grain size, sorting, roundness, matrix, cementation, |                    | Shows, cavings, mud |  |  |  |  |
| (m RKB)    | (%)                                | name      | hardness, sed | structures, accessories, fossils, porosity, contamination             | а                  | dditives, etc.      |  |  |  |  |

|      | Τ   | Т    | 10 5/8" x 12 1/4" section                                                |                                      |
|------|-----|------|--------------------------------------------------------------------------|--------------------------------------|
| 4000 | 100 | Clst | olv blk-grysh blk, dk gry occ m dk gry, frm-mod hd, sbblky, calc         | Cmt contaminated                     |
|      | Tr  | Ls   | wh-lt gry, occ clr, sft-frm, microxln                                    |                                      |
| 4010 | 100 | Clst | olv blk-grysh blk, occ dk gry, mod hd, sbblky, v calc grad to Mrl        |                                      |
| 4010 | rTr | Ls   | a.a.                                                                     |                                      |
|      | 111 | LS   | a.a.                                                                     |                                      |
| 4020 | 100 | Clst | Grad to Mrl, as above                                                    |                                      |
| 4030 | 100 | Clst | a.a.                                                                     |                                      |
| 4040 | 100 | Clst | olv blk-grysh blk, else a.a.                                             |                                      |
| 4050 | 100 | Clst | a.a.                                                                     |                                      |
| 4060 | 100 | Clst | olv blk-grysh blk, mod hd, sbblky, v calc grad to Mrl                    |                                      |
| 4070 | 100 | Clst | a.a.                                                                     |                                      |
| 4080 | 100 | Clst | a.a.                                                                     |                                      |
| 4090 | 100 | Clst | a.a.                                                                     |                                      |
| 4100 | 100 | Clst | pred grysh blk, mod hd, sbblky, v calc grad Mrl. also minor olv blk a.a. | CaCO3 mud additive contamination 30% |
| 4110 | 100 | Clst | a.a.                                                                     |                                      |
| 4120 | 100 | Clst | a.a.                                                                     |                                      |
|      | Tr  | Ls   | lt brnsh gry, frm, sbblky, crmb, arg, grad Mrl                           |                                      |
| 4130 | 100 | Clst | a.a.                                                                     |                                      |
|      | Tr  | Ls   | a.a.                                                                     |                                      |
| 4140 |     |      | Sample a.a.                                                              |                                      |
| 4150 |     |      | Sample a.a.                                                              |                                      |
| 4160 | _   |      | Sample a.a.                                                              |                                      |
| 4170 | +-  | +    | Sample a.a.                                                              |                                      |
| 4180 | 100 | Clst | grysh blk-olv blk, dk gry, mod hd, sbblky, v calc grad to Mrl            |                                      |
|      | Tr  | La   | a.a.                                                                     |                                      |



Doc. No. 2022-013511

Valid from: Dec 2022 Rev. no.: 0



|            |        |           |               | CUTTINGS DESCRIPTION                                                                 | Page 23 of 28          |
|------------|--------|-----------|---------------|--------------------------------------------------------------------------------------|------------------------|
| Country:   | Norwa  |           | Area:         | Northern North Sea                                                                   | Field: Cambozola       |
| Well no:   | NO 34  | l/9-1 S   | Company:      | Equinor Energy AS 35% (operator), Longboat Energy AS<br>Norway AS 20%, Petoro AS 20% | S 25%, Spirit Energy   |
| RKB:       | 30 mc  |           | Geologist:    | J. D Jackson, A.G. Lauvås. E. Tvedt, M. Moslet                                       |                        |
| Hole size: | 10 5/8 | " x 12 ¼" |               |                                                                                      | Date: 13.04-01.06.2022 |
|            |        |           |               | Lithological Description                                                             | Remarks                |
| Depth      | Lith.  | Rock      |               | colour, grain size, sorting, roundness, matrix, cementation,                         | Shows, cavings, much   |
| (m RKB)    | (%)    | name      | hardness,     | sed.structures, accessories, fossils, porosity, contamination                        | additives, etc.        |
|            |        |           |               |                                                                                      |                        |
|            |        |           |               |                                                                                      |                        |
| 4190       |        |           | Sample a.a.   |                                                                                      |                        |
|            |        |           |               |                                                                                      |                        |
| 4200       |        |           | Sample a.a.   |                                                                                      |                        |
|            |        |           |               |                                                                                      |                        |
| 4210       |        |           | Sample a.a.   |                                                                                      |                        |
| 1220       |        |           |               |                                                                                      |                        |
| 4220       | 100    | Clst      | olv blk-grysl | h blk, mod hd, sbblky, v cale grad to Mrl                                            |                        |
|            |        |           |               |                                                                                      |                        |
| 4230       | 100    | Clst      |               | h blk, dk gry, mod hd, sbblky, v calc grad to Mrl                                    |                        |
|            | Tr     | Ls        | a.a.          |                                                                                      |                        |
|            |        |           |               |                                                                                      |                        |
| 4240       | 100    | Clst      | a.a.          |                                                                                      |                        |
|            | Tr     | Ls        | a.a.          |                                                                                      |                        |
|            |        |           |               |                                                                                      |                        |
|            |        |           |               |                                                                                      |                        |
| 4250       | 100    | Clst      | olv blk-grysl | h blk, mod hd, sbblky, v calc grad to Mrl                                            |                        |
| 12.00      | 100    | C1 -      |               |                                                                                      |                        |
| 4260       | 100    | Clst      | a.a.          | 6                                                                                    |                        |
|            | Tr     | Ls        | It brish gry, | frm, sbblky, crmb, arg, grad Mrl                                                     |                        |
| 1270       | 100    | CI.       |               |                                                                                      |                        |
| 4270       | 100    | Clst      | a.a.          |                                                                                      |                        |
|            | Tr     | Ls        | a.a.          |                                                                                      |                        |
| 4280       | 100    | Clst      | Pred olv blk, | 20000                                                                                |                        |
| 4280       | Tr     | Ls        |               |                                                                                      |                        |
|            | Ir     | LS        | mod yeish gi  | ry-olv gry, frm-mod hd, sbblky, tr crmb, tr-mod arg                                  |                        |
| 4290       | 100    | Clst      |               |                                                                                      |                        |
| 4290       | Gd tr  | Ls        | a.a.<br>a.a.  |                                                                                      |                        |
|            | Gu u   | LS        | a.a.          |                                                                                      |                        |
| 4300       | 100    | Clst      | r trelty eter | micropyr, else a.a.                                                                  |                        |
| 4500       | Tr     | Ls        | a.a.          | meropyi, eise a.a.                                                                   |                        |
|            | 11     | La        | a.a.          |                                                                                      |                        |
| 4310       | 100    | Clst      | a.a.          |                                                                                      |                        |
| 7510       | Tr     | Ls        | a.a.          |                                                                                      | +                      |
|            | 11     | La        | a.a.          |                                                                                      |                        |
| 4320       | 100    | Clst      | a.a.          |                                                                                      |                        |
| 4520       | Tr     | Ls        |               | gry, else a.a.                                                                       |                        |
|            | **     |           | roan gusti    | gry, coo a.a.                                                                        |                        |
| 4322       | 100    | Clst      | a.a.          |                                                                                      | +                      |
| 7344       | 100    | CIST      | a.a.          |                                                                                      |                        |

Classification: Restricted Status: Final www.equinor.com

lt gnsh gry-olv gry, else a.a.



4361

4364

4367

100

Tr

100

100

Tr

Tr

Clst

Ls

Clst

Ls

Clst

Ls

a.a.

a.a.

a.a.

a.a.

a.a.

a.a.

Doc. No. 2022-013511

Valid from: Dec 2022 Rev. no.: 0



|            |        |         |                                   |                                                                                      | equilior              |
|------------|--------|---------|-----------------------------------|--------------------------------------------------------------------------------------|-----------------------|
|            |        |         | CI                                | UTTINGS DESCRIPTION                                                                  | Page 24 of 28         |
| Country:   | Norwa  | ay      | Area:                             | Northern North Sea                                                                   | Field: Cambozola      |
| Well no:   | NO 34  | 4/9-1 S | Company:                          | Equinor Energy AS 35% (operator), Longboat Energy AS<br>Norway AS 20%, Petoro AS 20% | 25%, Spirit Energy    |
| RKB:       | 30 m   | eters   | Geologist:                        | J. Alme, A.G. Lauvås. E. Tvedt, M. Moslet                                            |                       |
| Hole size: | 8 1/2" |         | Cut solvent:                      |                                                                                      | Date: 13.04-01.06.202 |
|            |        |         |                                   | Lithological Description                                                             | Remarks               |
| Depth      | Lith.  | Rock    | Mod.lith, col                     | lour, grain size, sorting, roundness, matrix, cementation,                           | Shows, cavings, muc   |
| (m RKB)    | (%)    | name    | hardness, sec                     | 1.structures, accessories, fossils, porosity, contamination                          | additives, etc.       |
|            | т —    | 1       | T                                 | 8 1/2" section                                                                       | Τ                     |
| 4328       | 100    | Clst    | prod dk omi oo                    | c dk gry - med dk gry, sft - mod hd, sbblky, slily calc                              |                       |
| 4320       | 100    | Cist    | pred dk gry, oc                   | c dk gry - med dk gry, sit - mod nd, sobiky, smy caic                                |                       |
| 4331       | 100    | Clst    | a.a.                              |                                                                                      |                       |
|            | Tr     | Ls      | lt olv gry, sft, b                | lky, microxln                                                                        |                       |
|            |        |         |                                   |                                                                                      |                       |
| 4334       | 100    | Clst    | a.a.                              |                                                                                      |                       |
|            | Tr     | Ls      | a.a.                              |                                                                                      |                       |
| 4337       | 100    | Clst    | a.a.                              |                                                                                      |                       |
| 1007       | Tr     | Ls      | a.a.                              |                                                                                      |                       |
| 12.10      | 100    | 61.     | ļ.,                               |                                                                                      |                       |
| 4340       | 100    | Clst    | r micropyr, else                  | a.a.                                                                                 |                       |
|            | Tr     | Ls      | a.a.                              |                                                                                      |                       |
| 4343       | 90     | Clst    | dk gry, olv blk,                  | sft - frm, sbblky - blky                                                             |                       |
|            | 10     | Ls      | lt olv gry, sft, b                |                                                                                      |                       |
| 4346       | 100    | Clst    |                                   |                                                                                      |                       |
| 4340       | Tr     | Ls      | a.a.                              |                                                                                      |                       |
|            |        |         |                                   |                                                                                      |                       |
| 4349       | 100    | Clst    | a.a.                              |                                                                                      |                       |
|            | Tr     | Ls      | a.a.                              |                                                                                      |                       |
| 4352       | 90     | Clst    | a.a.                              |                                                                                      |                       |
|            | 10     | Ls      | a.a.                              |                                                                                      |                       |
| 4355       | 90     | Clst    | 2.2                               |                                                                                      |                       |
| 4333       | 10     | Ls      | a.a.<br>a.a.                      |                                                                                      |                       |
|            |        |         |                                   |                                                                                      |                       |
| 4358       | 100    | Clst    | dk gry-grysh bl<br>micromic, Tr C | k-olv blk, sft-frm, blky, slily calc, i.p., slily slty,<br>arb Mat                   |                       |
|            | Tr     | Ls      | a.a.                              |                                                                                      |                       |
|            |        |         |                                   |                                                                                      |                       |



Doc. No. 2022-013511

Valid from: Dec 2022 Rev. no.: 0



|            |       |         | (                                   | CUTTINGS DESCRIPTION                                                                 | Page 25 of 28                                                                                                  |
|------------|-------|---------|-------------------------------------|--------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
| Country:   | Norwa | ay      | Area:                               | Northern North Sea                                                                   | Field: Cambozola                                                                                               |
| Well no:   | NO 34 | 1/9-1 S | Company:                            | Equinor Energy AS 35% (operator), Longboat Energy AS<br>Norway AS 20%, Petoro AS 20% | 25%, Spirit Energy                                                                                             |
| RKB:       | 30 m  | eters   | Geologist:                          | J. Alme, M. Vanhatalo, E. Tvedt, R. Ranjbar                                          |                                                                                                                |
| Hole size: | 6"    |         | Cut solvent:                        |                                                                                      | Date: 13.04-01.06.2022                                                                                         |
|            |       |         |                                     | Lithological Description                                                             | Remarks                                                                                                        |
| Depth      | Lith. | Rock    |                                     | colour, grain size, sorting, roundness, matrix, cementation,                         | Shows, cavings, mud                                                                                            |
| (m RKB)    | (%)   | name    | hardness, s                         | sed.structures, accessories, fossils, porosity, contamination                        | additives, etc.                                                                                                |
|            | _     |         |                                     | <b>69</b>                                                                            | 1                                                                                                              |
|            | -     |         |                                     | 6" section                                                                           |                                                                                                                |
| 4370       | 20    | Cmt     | +                                   |                                                                                      |                                                                                                                |
| 43/0       | 80    |         | med has die o                       | ry-grysh blk-blk, frm-mod hd, blky, non calc, i.p., slily                            |                                                                                                                |
|            | 80    | Clst    |                                     | c, Tr Carb Mat                                                                       |                                                                                                                |
| 4373       | 100   | Clst    | dk gry-grysh<br>micromic, Tr        | blk, occ mod brn, mod hd, amor-blky, non calc,<br>Carb Mat                           |                                                                                                                |
| 1000       | 100   | CI.     |                                     |                                                                                      |                                                                                                                |
| 4376       | 100   | Clst    | a.a.                                |                                                                                      |                                                                                                                |
| 4379       | 100   | Clst    |                                     |                                                                                      |                                                                                                                |
| 43/9       | Tr    |         | a.a.                                | mod hd, blky, microxln, arg i.p., occ Glauc, lam, strkd                              |                                                                                                                |
|            | II    | Ls      | blk i.p.                            | mod nd, biky, microxin, arg i.p., occ Giauc, iam, strkd                              |                                                                                                                |
| 4382       | 100   | Clst    | a.a.                                |                                                                                      |                                                                                                                |
|            | Tr    | Ls      | a.a.                                |                                                                                      |                                                                                                                |
|            |       |         |                                     |                                                                                      |                                                                                                                |
| 4385       | 90    | Clst    | dk gry-grysh<br>micromic, Tr        | blk, occ mod brn, mod hd, amor-blky, non calc,<br>Carb Mat                           |                                                                                                                |
|            | 10    | Ls      | a.a.                                |                                                                                      |                                                                                                                |
|            |       |         |                                     |                                                                                      |                                                                                                                |
| 4388       | 90    | Clst    | a.a.                                |                                                                                      |                                                                                                                |
|            | 10    | Sltst   | Mat                                 | gnsh gry, blky, frm, non calc, lam, micromic, Tr Carb                                |                                                                                                                |
|            | Tr    | Ls      | lt-brnsh gry, r<br>blk i.p., Tr v f | mod hd, blky, microxln, arg i.p., occ Glauc, lam, strkd<br>f Qtz gr                  |                                                                                                                |
| 4391       | 70    | Clst    | a.a.                                |                                                                                      |                                                                                                                |
|            | 20    | Sltst   | a.a.                                |                                                                                      |                                                                                                                |
|            | 10    | Ls      | a.a.                                |                                                                                      |                                                                                                                |
|            |       |         |                                     |                                                                                      |                                                                                                                |
| 4394       | 70    | Clst    | a.a.                                |                                                                                      |                                                                                                                |
|            | 20    | Sltst   | a.a.                                |                                                                                      | Possible loose vf Sd in<br>bottom of tray? Or is it<br>barite? No aggregates<br>of cuttings with sand in<br>it |
|            | 10    | Ls      | a.a.                                |                                                                                      |                                                                                                                |
|            |       |         |                                     |                                                                                      |                                                                                                                |
|            |       |         |                                     |                                                                                      |                                                                                                                |
|            |       |         |                                     |                                                                                      |                                                                                                                |



Doc. No. 2022-013511

Valid from: Dec 2022 Rev. no.: 0



|            | CUTTINGS DESCRIPTION Page 26 of 28 |        |               |                                                                                        |                     |                     |  |  |  |  |
|------------|------------------------------------|--------|---------------|----------------------------------------------------------------------------------------|---------------------|---------------------|--|--|--|--|
| Country:   | Norwa                              | y      | Area:         | Northern North Sea                                                                     | Field:              | Cambozola           |  |  |  |  |
| Well no:   | NO 34                              | /9-1 S | Company:      | Equinor Energy AS 35% (operator), Longboat Energy AS 2<br>Norway AS 20%, Petoro AS 20% | 25%, S <sub>l</sub> | pirit Energy        |  |  |  |  |
| RKB:       | 30 me                              | ters   | Geologist:    | J. Alme, M. Vanhatalo, E. Tvedt, R. Ranjbar                                            |                     |                     |  |  |  |  |
| Hole size: | 6"                                 |        | Cut solvent:  |                                                                                        | Date:               | 13.04-01.06.2022    |  |  |  |  |
|            |                                    |        |               | Lithological Description                                                               |                     | Remarks             |  |  |  |  |
| Depth      | Lith.                              | Rock   | Mod.lith, col | Mod.lith, colour, grain size, sorting, roundness, matrix, cementation,                 |                     | Shows, cavings, mud |  |  |  |  |
| (m RKB)    | (%)                                | name   | hardness, sec | Lstructures, accessories, fossils, porosity, contamination                             | 8                   | additives, etc.     |  |  |  |  |

|      | _  | _     |                                                                                                                                                                         |                                         |
|------|----|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|
| 4397 | 70 | Clst  | dk gry-grysh blk, mod hd, amor-blky, non calc, micromic, Tr Carb<br>Mat                                                                                                 | A lot of Baracarb50<br>CaCO3 in samples |
|      | 20 | Sltst | m dk gry-dk gnsh gry, blky, frm, non calc, micromic, Tr Carb Mat,<br>arg i.p.                                                                                           |                                         |
|      | 10 | Ls    | wh-lt gry, brnsh gry, mod hd, blky, microxln, arg i.p., lam, strkd blk i.p.                                                                                             |                                         |
|      |    |       |                                                                                                                                                                         |                                         |
| 4400 | 60 | Clst  | a.a.                                                                                                                                                                    |                                         |
|      | 30 | Sltst | a.a.                                                                                                                                                                    |                                         |
|      | 10 | Ls    | a.a.                                                                                                                                                                    |                                         |
| 4403 | 70 | Clst  | dk gry-grysh blk, mod hd, amor-blky, non calc, micromic, adb Carb<br>Mat                                                                                                |                                         |
|      | 20 | Sltst | m dk gry-dk gnsh gry, lt-brnsh gry i.p., blky, frm, occ lam, non calc,<br>micromic, Tr Carb Mat, arg i.p., Tr Glauc i.p.                                                |                                         |
|      | 10 | Ls    | wh-lt gry, brnsh gry, mod hd, blky, microxln, arg i.p., lam, strkd blk i.p., Tr Glauc i.p.                                                                              |                                         |
| 4406 | 70 | Clst  | a.a.                                                                                                                                                                    |                                         |
|      | 20 | Sltst | a.a.                                                                                                                                                                    |                                         |
|      | 10 | Ls    | a.a.                                                                                                                                                                    |                                         |
| 4409 | 60 | Clst  | dk gry-grysh blk, mod hd, amor-blky, non calc, micromic, Tr Carb<br>Mat                                                                                                 |                                         |
|      | 30 | Sltst | a.a.                                                                                                                                                                    |                                         |
|      | 10 | Ls    | a.a.                                                                                                                                                                    |                                         |
| 4412 | 70 | Clst  | a.a.                                                                                                                                                                    |                                         |
|      | 30 | Sltst | a.a.                                                                                                                                                                    |                                         |
|      | Tr | Ls    | a.a.                                                                                                                                                                    |                                         |
| 4415 | 70 | Clst  | a.a.                                                                                                                                                                    |                                         |
|      | 30 | Sltst | m dk gry-dk gnsh gry, lt-brnsh gry i.p., blky, frm, occ lam, non calc,<br>occ sdy, r clr, smky gry, v f, rndd Qtz gr, micromic, Tr Carb Mat, arg<br>i.p., Tr Glauc i.p. |                                         |
|      | Tr | Ls    | a.a.                                                                                                                                                                    |                                         |
| 4418 | 80 | Clst  |                                                                                                                                                                         |                                         |
| 4410 | 20 | Sltst | a.a.<br>a.a.                                                                                                                                                            |                                         |
|      |    | 1.00  | 19 9                                                                                                                                                                    |                                         |
|      | Tr | Ls    | a.a.                                                                                                                                                                    |                                         |



Doc. No. 2022-013511

Valid from: Dec 2022 Rev. no.: 0



|            | CUTTINGS DESCRIPTION |        |               |                                                                                                     |                     |                  |  |  |
|------------|----------------------|--------|---------------|-----------------------------------------------------------------------------------------------------|---------------------|------------------|--|--|
| Country:   | Norwa                | y      | Area:         | Northern North Sea                                                                                  | Field:              | Cambozola        |  |  |
| Well no:   | NO 34                | /9-1 S | Company:      | quinor Energy AS 35% (operator), Longboat Energy AS 25%, Spirit Energy lorway AS 20%, Petoro AS 20% |                     |                  |  |  |
| RKB:       | 30 me                | ters   | Geologist:    | J. Alme, M. Vanhatalo, E. Tvedt, R. Ranjbar                                                         |                     |                  |  |  |
| Hole size: | 6"                   |        | Cut solvent:  |                                                                                                     | Date:               | 13.04-01.06.2022 |  |  |
|            |                      |        |               |                                                                                                     | Remarks             |                  |  |  |
| Depth      | Lith.                | Rock   | Mod.lith, col | our, grain size, sorting, roundness, matrix, cementation,                                           | Shows, cavings, mud |                  |  |  |
| (m RKB)    | (%)                  | name   | hardness, sed | structures, accessories, fossils, porosity, contamination                                           | а                   | dditives, etc.   |  |  |

| 4421 | 80     | Clst  | dk gry-grysh blk, mod hd, amor-blky, non calc, micromic, Tr Carb<br>Mat                                                                                                 | A lot of Baracarb50<br>CaCO3 as well as<br>micro-Barite in<br>samples |
|------|--------|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|
|      | 10     | Sltst | m dk gry-dk gnsh gry, lt-brnsh gry i.p., blky, frm, occ lam, non calc,<br>occ sdy, r clr, smky gry, v f, rndd Qtz gr, micromic, Tr Carb Mat, arg<br>i.p., Tr Glauc i.p. |                                                                       |
|      | 10     | Sst   | lt-brnsh gry, frm, amor, fri, slily calc cmt, r lse, clr, smky gry, v f,<br>rndd Qtz gr, micromic, Carb Mat, arg i.p., n/s                                              |                                                                       |
| 4424 | 80     | Clst  | a.a.                                                                                                                                                                    |                                                                       |
|      | 10     | Sltst | a.a.                                                                                                                                                                    |                                                                       |
|      | 10     | Sst   | a.a.                                                                                                                                                                    |                                                                       |
| 4427 | 80     | Clst  | a.a.                                                                                                                                                                    |                                                                       |
| 4427 | 10     | Sltst | a.a.<br>a.a.                                                                                                                                                            |                                                                       |
|      | 10     | Sst   | a.a.<br>a.a.                                                                                                                                                            |                                                                       |
|      | $\top$ |       |                                                                                                                                                                         |                                                                       |
| 4430 | 70     | Clst  | a.a.                                                                                                                                                                    |                                                                       |
|      | 30     | Sltst | a.a.                                                                                                                                                                    |                                                                       |
|      | Tr     | Sst   | a.a.                                                                                                                                                                    | No shows                                                              |
| 4433 | 80     | Clst  | a.a.                                                                                                                                                                    |                                                                       |
| 4433 | 20     | Sltst | a.a.<br>a.a.                                                                                                                                                            |                                                                       |
|      | Tr     | Sst   |                                                                                                                                                                         |                                                                       |
|      | Tr     | Ls    | a.a. wh-lt gry, mod hd, occ crmb, blky, microxln, arg i.p., lam, strkd blk i.p.                                                                                         |                                                                       |
| 4436 | 70     | Clst  | a.a.                                                                                                                                                                    |                                                                       |
|      | 20     | Sltst | m dk gry-dk gnsh gry, lt-brnsh gry i.p., blky, frm, occ lam, non calc,<br>occ sdy, r clr, smky gry, v f, rndd Qtz gr, micromic, Tr Carb Mat, arg<br>i.p., occ micropyr  |                                                                       |
|      | 10     | Sst   | a.a.                                                                                                                                                                    |                                                                       |
|      | Tr     | Ls    | a.a.                                                                                                                                                                    |                                                                       |
| 4439 | 70     | Clst  | a.a.                                                                                                                                                                    |                                                                       |
| 4437 | 30     | Sltst | a.a.<br>a.a.                                                                                                                                                            |                                                                       |
|      | Tr     | Sst   | a.a.                                                                                                                                                                    |                                                                       |
|      | Tr     | Ls    | a.a.<br>a.a.                                                                                                                                                            |                                                                       |
|      |        | Lo    | Ma-Sila                                                                                                                                                                 |                                                                       |
|      |        |       |                                                                                                                                                                         |                                                                       |



Doc. No. 2022-013511

Valid from: Dec 2022 Rev. no.: 0



| CUTTINGS DESCRIPTION Page 28 of 28 |                              |      |                                                                                         |                                                                        |                        |
|------------------------------------|------------------------------|------|-----------------------------------------------------------------------------------------|------------------------------------------------------------------------|------------------------|
| Country:                           | Norway                       |      | Area:                                                                                   | Northern North Sea                                                     | Field: Cambozola       |
| Well no:                           | NO 34/9-1 S                  |      | Company:                                                                                | Equinor Energy AS 35% (operator), Longboat Energy AS 25%, Spirit Energ |                        |
|                                    | Norway AS 20%, Petoro AS 20% |      |                                                                                         |                                                                        |                        |
| RKB:                               | 30 meters                    |      | Geologist:                                                                              | J. Alme, M. Vanhatalo, E. Tvedt, R. Ranjbar                            |                        |
| Hole size:                         | 6"                           |      | Cut solvent:                                                                            |                                                                        | Date: 13.04-01.06.2022 |
|                                    |                              |      | Lithological Description Remarks                                                        |                                                                        |                        |
| Depth                              | Lith.                        | Rock | Mod.lith, colour, grain size, sorting, roundness, matrix, cementation,                  |                                                                        | Shows, cavings, mud    |
| (m RKB)                            | (%)                          | name | hardness, sed.structures, accessories, fossils, porosity, contamination additives, etc. |                                                                        |                        |

| 4442 | 70       |       | dk gry-grysh blk, mod hd, amor-blky, non calc, micromic, Tr Carb<br>Mat                                                                                                | A lot of Baracarb50<br>CaCO3 as well as<br>micro-Barite in<br>samples |
|------|----------|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|
|      | 30       |       | m dk gry-dk gnsh gry, lt-brnsh gry i.p., blky, frm, occ lam, non calc,<br>occ sdy, r clr, smky gry, v f, rndd Qtz gr, micromic, Tr Carb Mat, arg<br>i.p., occ micropyr | samples                                                               |
|      | Tr       |       | lt-brnsh gry, frm, amor, fri, slily calc cmt, r lse, clr, smky gry, v f,<br>rndd Qtz gr, micromic, Carb Mat, arg i.p., n/s                                             |                                                                       |
|      | Tr       |       | wh-lt gry, mod hd, occ crmb, blky, microxln, arg i.p., lam, strkd blk i.p.                                                                                             |                                                                       |
|      |          |       |                                                                                                                                                                        |                                                                       |
| 4444 | 60       | Clst  | a.a.                                                                                                                                                                   |                                                                       |
| B/U  | 20       | Sltst | a.a.                                                                                                                                                                   |                                                                       |
|      | 10       | Sst   | a.a.                                                                                                                                                                   |                                                                       |
|      | 10       | Ls    | a.a.                                                                                                                                                                   |                                                                       |
| 4445 | 60       | Clst  | dk gry-grysh blk, mod hd, amor-blky, non calc, micromic, slty, Tr<br>Carb Mat                                                                                          |                                                                       |
|      | 40       | Sltst | m dk gry-dk gnsh gry, blky, frm, occ lam, non calc, occ sdy, r clr,<br>smky gry, v f, Qtz gr, micromic, Tr Carb Mat, arg i.p., occ micropyr                            |                                                                       |
|      | Tr       | Ls    | a.a.                                                                                                                                                                   |                                                                       |
| 4440 |          | C1 -  |                                                                                                                                                                        |                                                                       |
| 4448 | 60       | Clst  | a.a.                                                                                                                                                                   |                                                                       |
|      | 40<br>Tr | Sltst | a.a.                                                                                                                                                                   |                                                                       |
|      | Ir       | Ls    | a.a.                                                                                                                                                                   |                                                                       |
| 4451 | 60       | Clst  | a.a.                                                                                                                                                                   |                                                                       |
| 4431 | 40       | Sltst | a.a.                                                                                                                                                                   |                                                                       |
|      | Tr       | Ls    | a.a.                                                                                                                                                                   |                                                                       |
|      |          |       |                                                                                                                                                                        |                                                                       |
| 4454 | 70       | Clst  | a.a.                                                                                                                                                                   |                                                                       |
|      | 30       | Sltst | a.a.                                                                                                                                                                   |                                                                       |
|      | Tr       | Ls    | a.a.                                                                                                                                                                   |                                                                       |
| 4455 | 70       | Clst  | a.a.                                                                                                                                                                   | TD B/U                                                                |
|      | 30       | Sltst | a.a.                                                                                                                                                                   |                                                                       |
|      | Tr       | Ls    | a.a.                                                                                                                                                                   |                                                                       |
|      |          | -     | 50-50-0                                                                                                                                                                |                                                                       |



Doc. No. 2022-013511

Valid from: Dec 2022 Rev. no.: 0

# App E Shallow geohazard report

# Shallow geohazard report (pilot hole and main well)

# Well NO 34/9-U-1

# 1. General data

| Country - Area: Norway     | Well number: NO 34/9-U-1 |  |  |
|----------------------------|--------------------------|--|--|
| License number: PL1049     | Structure: Pilot hole    |  |  |
| Water depth (m MSL): 382 m | RKB: 30 m                |  |  |
| 30" depth: 466.7m MD       | LOT/FIT: N/A             |  |  |
|                            |                          |  |  |

2. Geology

| Formation | Prognosed depth (m TVD RKB) | Observed depth (m TVD RKB) |  |  |
|-----------|-----------------------------|----------------------------|--|--|
| Nordland  | 412                         | 412                        |  |  |
| Utsira    | 1032                        | 1019                       |  |  |
| Hordaland | 1052                        | 1058                       |  |  |



Page 108 of 196

Final well report,
Pilot well NO 34/9-U-1

and Exploration well NO 34/9-1 S Cambozola

Doc. No. 2022-013511

Valid from: Dec 2022 Rev. no.: 0

|                          | Prognosed depth         | Observed depth interval |             |
|--------------------------|-------------------------|-------------------------|-------------|
| Sand layer               | interval<br>(m TVD RKB) | (m MD)                  | (m TVD RKB) |
| Unit 2 (Base Quaternary) | 436                     | -                       | -           |
| Unit 4                   | 446                     | 447                     | 447         |
| Unit 4                   | 468                     | -                       | -           |
| Base Unit 4              | 494                     | 490                     | 490         |
| Unit 5                   | 509                     | -                       | -           |
| Unit 5                   | 564                     | -                       | -           |
| Unit 5                   | 599                     | 601 – 604               | 601 – 604   |
| Unit 5                   | 640                     | -                       | -           |
| Unit 5                   | 685                     | -                       | -           |
| Unit 5                   | 766                     | -                       | -           |
| Unit 5                   | 864                     | -                       | -           |
| Unit 5                   | 936                     | -                       | -           |
| Unit 5                   | 968                     | 965                     | 966         |
| Unit 6 (Utsira)          | 1139                    | 1018-1058               | 1018-1058   |

## **Boulders/gravel beds:**

No indications of boulders in the pilot hole.

# 3. Shallow gas

| Prognosed depth (m TVD RKB) | Observed depth (m TVD RKB) | Comments                |
|-----------------------------|----------------------------|-------------------------|
| 640 - 648                   |                            | No shallow gas observed |

## 4. Shallow water flow

Shallow water flow was not expected and was not observed in the pilot.

## 5. Other shallow geohazard

Faults: No faults were prognosed, and none were observed

Unconformities: No unconformities were prognosed, and none were observed

Loose or weak formation: None was observed.

Hydrates: No gas hydrates were expected at well location, and no sign of such were observed while drilling the section

## 6. Summary

Much less sand was observed, than was prognosed. Only a few thin sands were encountered above Utsira Formation. the most prominent sand bed was found at 601-604m TVD RKB. No sign of shallow gas or water flow was observed from this sand.



Final well report, Pilot well NO 34/9-U-1

and Exploration well NO 34/9-1 S Cambozola

Doc. No. 2022-013511

Valid from: Dec 2022 Rev. no.: 0

## Well NO 34/9-1 S

## 1. General data

| Country - Area: Norway   | Well number: NO 34/9-1 S     |
|--------------------------|------------------------------|
| Licence number: PL1049   | Structure: Deepsea Stavanger |
| Water depth (m MSL): 482 | RKB: 30m                     |
| 30" depth: 466.7m        | LOT/FIT: N/A                 |
| 20" depth: 1286.8m MD    | LOT/FIT: 1.55sg              |

2. Geology

| Formation | Prognosed depth (m TVD RKB) | Observed depth (m TVD RKB) |
|-----------|-----------------------------|----------------------------|
| Naust     | 412                         | 412                        |
| Utsira    | 1032                        | 1018                       |
| Hordaland | 1052                        | 1052                       |

|                          | Prognosed depth         | Observed  | depth interval |
|--------------------------|-------------------------|-----------|----------------|
| Sand layer               | interval<br>(m TVD RKB) | (m MD)    | (m TVD RKB)    |
| Unit 2 (Base Quaternary) | 436                     | -         | -              |
| Unit 4                   | 446                     | -         | -              |
| Unit 4                   | 468                     | -         | -              |
| Base Unit 4              | 494                     | -         | -              |
| Unit 5                   | 509                     | -         | -              |
| Unit 5                   | 564                     | -         | -              |
| Unit 5                   | 599                     | 601 – 604 | 601 – 604      |
| Unit 5                   | 640                     | -         | -              |
| Unit 5                   | 685                     | -         | -              |
| Unit 5                   | 766                     | -         | -              |
| Unit 5                   | 864                     | -         | -              |
| Unit 5                   | 936                     | -         | -              |
| Unit 5                   | 968                     | -         | -              |
| Unit 6 (Utsira)          | 1139                    | 1018      | 1018           |

Due to the poor data quality in the 26x42" and 26" section it is suggested that the Shallow geohazards report for the pilot is used for any assessment of sand layers.



Page 110 of 196

Final well report,

Pilot well NO 34/9-U-1

and Exploration well NO 34/9-1 S Cambozola

Valid from: Dec 2022 Rev. no.: 0

Doc. No. 2022-013511

#### Boulders/gravel beds:

According to Shallow Hazards report boulders could be expected form from seabed down to 436+-4mTVD RKB. Boulders and tough drilling were reported from 43m to 467m. very low ROP. 1-3m/hr

### 3. Shallow gas

| Prognosed depth (m TVD RKB) | Observed depth (m TVD RKB) | Comments                       |
|-----------------------------|----------------------------|--------------------------------|
| 640m                        |                            | No sand observed at this depth |

Other comments:

Shallow gas was not observed.

### 4. Shallow water flow

No water flow was expected at well location, and none were observed either while drilling the section.

### Other comments:

Gamma Ray and Resistivity were run in the BHA, and ROV was available with Sonar to detect shallow gas flow from the well.

## 5. Other shallow geohazards

Faults: No faults were prognosed, and none were observed

Unconformities: No unconformities were prognosed, and none were observed

Loose or weak formation: None was observed.

Hydrates: No gas hydrates were expected at well location, and no sign of such were observed while drilling the section

### 6. Summary

Much less sand was observed, than was prognosed. Only one thin sand was encountered above Utsira Fm, at 601-604m. No sign of shallow gas or water flow was observed from this sand.



Doc. No. 2022-013511

Valid from: Dec 2022 Rev. no.: 0

## App F Final well locations memos



NAVIGATION REPORT SANDSLI

EPN JOS LE OPCLE OR

MAGVAL 11.04.2022

TO: Ottar Hunnes EPN SUB CCN GGP WS3

Jesus Hernandez PDP DW DWCC EN DW9

COPY: GM GEOHAZARD GEOHAZARD@equinor.com

Bernt Magne Christiansen EPI SUB CCI GGP GPH2
Tore Klungsøyr EPN SUB CCN GGP WS3
Ingrid Enge Drange EPN SUB CCN GGP GEO1

FROM: Magnus Valen CONTROLLED BY.: Trond Olay Groven

SUBJECT: FINAL POSITION

Location: 34/9-U-1 Cambozola North Pilot

RIG: Deepsea Stavanger

SURFACE POSITION:

Geographical Co-ordinates: Latitude: 61° 16' 45.374" N Spheroid: Int. 1924

Longitude: 02° 48' 44.331" E Datum: ED50

UTM Co-ordinates: Northing: 6 794 070.5 m UTM Zone: 31 N

Easting: 489 937.6 m C.M.: 03° E

Datum Shift Parameters WGS84 to ED50: EPSG 1613, South of 62°

Deviation:

The position was observed to be 0.3 meter on a bearing of 277.8° G from the intended location.

Position Accuracy:

± 3.56 meter at the 2σ confidence level (95%, 2 x Standard Deviation)



Doc. No. 2022-013511

Valid from: Dec 2022 Rev. no.: 0



NAVIGATION REPORT SANDSLI

EPN JOS LE OPCLE OR

MAGVAL 11.04.2022

TO: Ingrid Enge Drange EPN SUB CCN GGP GEO1

Alfred Båtevik EPN SUB CCN GGP GEO2

COPY: GM GEOHAZARD GEOHAZARD@equinor.com

Bernt Magne Christiansen EPI SUB CCI GGP GPH2
Ottar Hunnes EPN SUB CCN GGP WS3
Tore Klungsøyr EPN SUB CCN GGP WS3

FROM: Magnus Valen CONTROLLED BY.: Trond Glav Groven

SUBJECT: FINAL POSITION

Location: 34/9-1 S Cambozola North

RIG: Deepsea Stavanger

SURFACE POSITION:

Geographical Co-ordinates: Latitude: 61° 16' 45.676" N Spheroid: Int. 1924

Longitude: 02° 48' 44.443" E Datum: ED50

UTM Co-ordinates: Northing: 6 794 079.9 m UTM Zone: 31 N

Easting: 489 939.3 m C.M.: 03° E

Datum Shift Parameters WGS84 to ED50: EPSG 1613, South of 62°

Deviation:

The position was observed to be 0.5 meter on a bearing of 217.1° G from the intended location.

Position Accuracy:

± 3.21 meter at the 2σ confidence level (95%, 2 x Standard Deviation)

Page 112 of 196



Page 113 of 196

Final well report,
Pilot well NO 34/9-U-1
and Exploration well NO 34/9-1 S Cambozola

Doc. No. 2022-013511

Valid from: Dec 2022 Rev. no.: 0

# App G Wellbore Schematic

|                               |              | Well:<br>Field:<br>Rig: | Cambozola<br>Exploration<br>Deepsea Stavanger                                         |                                               | W     |              | SCH<br>lainbo | EMAT<br>ere | TIC  |     | R  | II depths<br>KB-MSL :<br>ate: 03.03 | = 30 m | RKB.             |
|-------------------------------|--------------|-------------------------|---------------------------------------------------------------------------------------|-----------------------------------------------|-------|--------------|---------------|-------------|------|-----|----|-------------------------------------|--------|------------------|
| HOLE                          |              |                         | CASING/LINER                                                                          |                                               | LOT / | тос          | TOL           | CSG.        | SHOE |     |    | Max PP                              | Min FG | Fluid            |
| SIZE                          | TVD<br>MD    | SIZE                    | TYPE / RAD. MARKERS                                                                   | CENTRALIZERS                                  | [SG]  | TVD          | MD            | TVD         | MD   | RKB |    | [SG]                                | [SG]   | [SG]             |
| SB                            | 412          |                         |                                                                                       |                                               |       |              |               |             |      |     |    |                                     |        |                  |
| <b>42"</b><br>57              | 469<br>469   | 36"                     | Interval: 412 m - 467 m<br>Type: 553lb/ft, X-56, Tenaris LR 70<br>Drift: 31.22*       |                                               | N/A   | Seabed       | Seabed        | 467         | 467  |     |    | 0,95                                | 0,95   | SW+PAD<br>1,30   |
| <b>26"</b><br>831             | 1300<br>1300 | 20"                     | Interval: 469 m - 1287 m<br>Type: 133lb/ft, N80, Tenaris ER<br>Drift: 18.542*         | 2/3 to SB<br>1/1 200m (tail)<br>2/1 shoetrack | FIT   | Seabed       | Seabed        | 1287        | 1287 |     |    | 1,00                                | 1,03   | SW+PAD<br>1,30   |
| <b>17 1/2"</b><br>2160        | 3440<br>3460 | 14"                     | Interval: 1300 m - 3450 m<br>Type: 114lb/ft, SM125S ,VamTop KB<br>Drift: 12.25"       | 2/3 to TOC<br>1/1 200m                        |       | 1539         | 1539          |             |      |     |    |                                     |        |                  |
|                               |              |                         |                                                                                       | 2/1 shoetrack                                 | XLOT  | 3350         | 3369          | 3430        | 3450 |     |    | 1,35                                | 1,54   | OBM<br>1,40      |
| <b>12 1/4"x13 1/2"</b><br>529 | 3959<br>3989 | 11 3/4"                 | Interval: 3460 m - 3989 m<br>Type: 60lb/ft, P-110, Hydril 513<br>Drift: 10.625*       | 1/1 to TOC<br>2/1 shoetrack                   |       | 3666         | 3691          |             |      |     |    | 1.67                                | 1.94   | OBM<br>1.70      |
|                               |              |                         |                                                                                       |                                               | FIT   |              |               | 3947        | 3977 |     |    | 1,07                                | .,     | 1,10             |
| <b>10 5/8"x12 1/4"</b><br>333 | 4290<br>4322 | 9 7/8"                  | Interval: 3989 m - 4322 m<br>Type: 66.4lb/ft, SM125S, VamTop / SLIJ-II<br>Drift: 8.5" | 2/1 to TOC<br>2/1 shoetrack                   |       | 4058<br>4214 | 4089<br>4246  |             |      |     |    |                                     |        | OBM              |
|                               |              |                         |                                                                                       |                                               | LOT   |              |               | 4273        | 4305 |     | X. | 1,93                                | 2,06   | 1,96             |
| <b>8 1/2"</b><br>45           | 4336<br>4367 | 7"                      | Interval: 4322 m - 4367 m<br>Type: 32lb/ft, P-110, Vam HTTC<br>Drift: 6,0*            | 2/1 to TOC<br>2/1 shoetrack                   | 201   |              |               | 4335        | 4366 |     |    | 1,88                                | 2,17   | OBM<br>1,99      |
| <b>6"</b><br>88               | 4423<br>4455 | ОН                      | Interval: 4367 m - 4455 m                                                             |                                               |       |              |               | 4423        | 4455 |     |    | 1,99                                | 2,18   | OBM<br>1.99-2.02 |



Page 114 of 196

Final well report,
Pilot well NO 34/9-U-1
and Exploration well NO 34/9-1 S Cambozola

Doc. No. 2022-013511

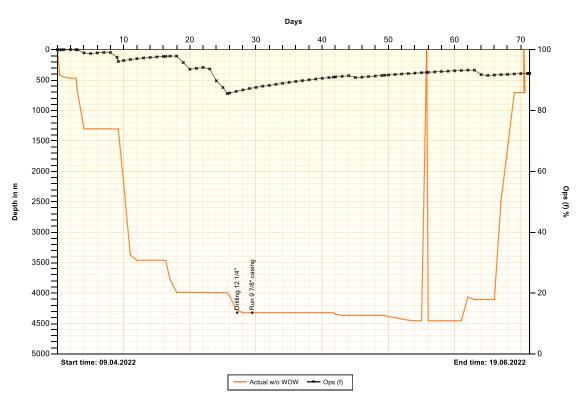
Valid from: Dec 2022 Rev. no.: 0

# **App H P&A Wellbore Schematic**

|                               |              | Well:<br>Field:<br>Rig: | Cambozola<br>Exploration<br>Deepsea Stavanger                                     | WEI          |              | CHEM<br>ore P& | ATIC | All depths refer to RKB.<br>RKB-MSL = 30 m<br>Date: 02.06.2022 |              |                                                          |                        |  |  |  |  |
|-------------------------------|--------------|-------------------------|-----------------------------------------------------------------------------------|--------------|--------------|----------------|------|----------------------------------------------------------------|--------------|----------------------------------------------------------|------------------------|--|--|--|--|
| HOLE                          |              |                         | CASING/LINER                                                                      | тос          | /TOL         | CSG.           | SHOE |                                                                |              | Cutting and Plugging                                     |                        |  |  |  |  |
| SIZE                          | TVD<br>MD    | SIZE                    | TYPE / RAD. MARKERS                                                               | TVD          | MD           | TVD            | MD   | RKB                                                            | m MD         | Description (length)                                     | Verification           |  |  |  |  |
| SB                            | 412          |                         |                                                                                   |              |              |                |      |                                                                |              |                                                          |                        |  |  |  |  |
| <b>42"</b><br>57              | 469<br>469   | 36"                     | Interval: 412 m - 467 m<br>Type: 553lb/ft, X-56, Tenaris LR 70<br>Drift: 31.22"   | Seabed       | Seabed       | 467            | 467  |                                                                | 415          | Wellhead cut                                             |                        |  |  |  |  |
| <b>26"</b><br>831             | 1300<br>1300 | 20"                     | Interval: 469 m - 1287 m<br>Type: 133lb/ft, N80, Tenaris ER<br>Drift: 18.542*     | Seabed       |              | 1287           | 1287 | Plug #9                                                        | 690,00       | Open hole to surface plug                                | No verification        |  |  |  |  |
| <b>17 1/2"</b><br>2160        | 3440<br>3460 |                         | Interval: 1300 m - 3450 m<br>Type: 114lb/ft, SM125S ,VamTop KB<br>Drift: 12.25*   | 1539         | 1539         |                |      | Paig #8 Piug #7                                                | 1770<br>1800 | Secondary towards Lista fm.<br>Primary towards Lista fm. | Combined dress and tag |  |  |  |  |
|                               |              |                         |                                                                                   | 3350         | 3369         |                |      | Plug 86 Plug 85                                                | 2620<br>2650 | Secondary towards Trygvasson fm.                         | Combined dress and tag |  |  |  |  |
| <b>12 1/4"x13 1/2"</b><br>529 | 3959<br>3989 | 11 3/4"                 | Intervel: 3460 m - 3989 m<br>Type: 60b/ft, P-110, Hydril 513<br>Drift: 10.825"    | 3666         | 3691         | 3430           | 3450 | Tryggvason fm.                                                 |              |                                                          |                        |  |  |  |  |
| 10 5/8"x12 1/4"<br>333        | 4290<br>4322 | 9 7/8"                  | Interval: 3989 m - 4322 m<br>Type: 66.4lb/ft, SM125S, VamTop / SLL<br>Drift: 8.5" | 4058<br>4214 | 4089<br>4246 | 4273           | 4305 | Flag M<br>Plug 83                                              | 4216<br>4246 | Secondary towards Radby fm<br>Frimary towards Radby fm   | Combined dress and tag |  |  |  |  |
| <b>8 1/2"</b><br>45           | 4336<br>4367 | 7"                      | Interval: 4322 m - 4367 m<br>Type: 32/b/ft, P-110, Vam HTTC<br>Drift: 6,0"        |              |              | 4335           | 4366 | Radby fm Phug #2                                               |              | Secondary towards Reservoir                              |                        |  |  |  |  |
| <b>6"</b><br>88               | 4423<br>4455 | ОН                      | Interval: 4367 m - 4455 m                                                         |              |              | 4423           | 4455 | ntra Sola fm / Sitstone                                        | 4405         | Primary towards Reservoir                                | Dress and tag          |  |  |  |  |



Doc. No. 2022-013511


Valid from: Dec 2022 R

Rev. no.: 0

# App I Time vs. depth curve

### Time vs depth curve

NO 34/9-1 S



Page 115 of 196



Doc. No. 2022-013511

Valid from: Dec 2022

Rev. no.: 0

# App J Time planner

PROJECT NAME: EXPL - NO 34/9-1 S, U-1 - Drilling, P&A - Cambozola

**PROJECT NUMBER:** 

| Start time           | End time             | Budget<br>time<br>hrs | Acc<br>budget<br>days | Target time hrs | Acc<br>tech<br>days | Plan<br>time<br>hrs | Act time hrs | Acc actual days | Down<br>time | Description                                                  | Companies  |
|----------------------|----------------------|-----------------------|-----------------------|-----------------|---------------------|---------------------|--------------|-----------------|--------------|--------------------------------------------------------------|------------|
| 09.Apr.2022<br>00:00 | 09.Apr.2022<br>08:20 | 31.6                  | 1.3                   | 0.0             | 0.0                 | 8.0                 | 8.4          | 0.4             | 0.0          | Move to Location [NO 34/9-1 S]                               |            |
| 09.Apr.2022<br>00:00 | 09.Apr.2022<br>05:45 | 6.0                   | 0.3                   | 0.0             | 0.0                 | 5.0                 | 5.8          | 0.2             | 0.0          | Transit to Cambozola from Kveikje n'Roll location            | ODS        |
| 09.Apr.2022<br>05:45 | 09.Apr.2022<br>08:20 | 25.6                  | 1.3                   | 0.0             | 0.0                 | 3.0                 | 2.6          | 0.3             | 0.0          | Field arrival, DP setup and logistics (Install transponders) | ODS,Schlum |
| 09.Apr.2022<br>08:20 | 09.Apr.2022<br>14:35 | 5.5                   | 0.2                   | 0.0             | 0.0                 | 0.3                 | 6.2          | 0.3             | 0.0          | Pre-Spud [NO 34/9-1 S]                                       |            |
| 09.Apr.2022<br>08:20 | 09.Apr.2022<br>13:40 | 0.0                   | 1.3                   | 0.0             | 0.0                 | 0.0                 | 5.3          | 0.6             | 0.0          | Unplanned: Run 36" conductor to seabed in Main and hang off  | ODS,Schlum |
| 09.Apr.2022<br>13:40 | 09.Apr.2022<br>14:35 | 2.5                   | 1.4                   | 0.0             | 0.0                 | 0.3                 | 0.9          | 0.6             | 0.0          | Tag seabed and verify rig position with 26" x 42" BHA        | ODS,Schlum |
| 09.Apr.2022<br>14:35 | 11.Apr.2022<br>19:20 | 46.6                  | 1.9                   | 0.0             | 0.0                 | 24.6                | 52.8         | 2.2             | 0.0          | 26" x 42" [NO 34/9-1 S]                                      |            |
| 09.Apr.2022<br>14:35 | 09.Apr.2022<br>14:35 | 3.0                   | 1.5                   | 0.0             | 0.0                 | 0.0                 | 0.0          | 0.6             | 0.0          | Sim ops: Anchor handling                                     | ODS        |
| 09.Apr.2022<br>14:35 | 10.Apr.2022<br>11:20 | 20.0                  | 2.4                   | 0.0             | 0.0                 | 8.0                 | 20.8         | 1.5             | 0.0          | Drill 26" x 42" section to TD @ 473 mMD (Gross ROP 11 m/hr)  | ODS,Schlum |
| 10.Apr.2022<br>11:20 | 10.Apr.2022<br>12:20 | 5.6                   | 2.6                   | 0.0             | 0.0                 | 1.3                 | 1.0          | 1.5             | 0.0          | Circulate hole clean. Displace to displacement mud           | ODS,Schlum |



Doc. No. 2022-013511

Valid from: Dec 2022

Rev. no.: 0

| Start time           | End time             | Budget<br>time<br>hrs | Acc<br>budget<br>days | Target time hrs | Acc<br>tech<br>days | Plan<br>time<br>hrs | Act<br>time<br>hrs | Acc<br>actual<br>days | Down<br>time | Description                                                                           | Companies     |
|----------------------|----------------------|-----------------------|-----------------------|-----------------|---------------------|---------------------|--------------------|-----------------------|--------------|---------------------------------------------------------------------------------------|---------------|
| 10.Apr.2022<br>12:20 | 10.Apr.2022<br>16:30 | 2.0                   | 2.7                   | 0.0             | 0.0                 | 2.0                 | 4.2                | 1.7                   | 0.0          | POOH and LD BHA                                                                       | ODS,Schlum    |
| 10.Apr.2022<br>16:30 | 10.Apr.2022<br>17:00 | 1.0                   | 2.7                   | 0.0             | 0.0                 | 1.0                 | 0.5                | 1.7                   | 0.0          | Pick up conductor from moonpool                                                       | ODS           |
| 10.Apr.2022<br>16:30 | 10.Apr.2022<br>16:30 | 1.0                   | 2.8                   | 0.0             | 0.0                 | 0.5                 | 0.0                | 1.7                   | 0.0          | Clean and clear + dropcheck.                                                          | ODS,Schlum    |
| 10.Apr.2022<br>17:00 | 10.Apr.2022<br>20:00 | 2.0                   | 2.9                   | 0.0             | 0.0                 | 0.3                 | 3.0                | 1.8                   | 0.0          | Run conductor on RT. Stab 36" conductor into hole and RIH to TD                       | BH,ODS,Schlum |
| 10.Apr.2022<br>20:00 | 10.Apr.2022<br>20:50 | 2.0                   | 2.9                   | 0.0             | 0.0                 | 0.5                 | 0.8                | 1.9                   | 0.0          | Circulate prior to cement job                                                         | BH,ODS,Schlum |
| 10.Apr.2022<br>20:50 | 10.Apr.2022<br>22:50 | 4.0                   | 3.1                   | 0.0             | 0.0                 | 1.5                 | 2.0                | 2.0                   | 0.0          | Cement 36" conductor                                                                  | BH,ODS,Schlum |
| 10.Apr.2022<br>22:50 | 11.Apr.2022<br>10:50 | 0.0                   | 3.1                   | 0.0             | 0.0                 | 0.0                 | 12.0               | 2.5                   | 0.0          | WOC prior to disconnect conductor RT                                                  | BH,ODS,Schlum |
| 11.Apr.2022<br>10:50 | 11.Apr.2022<br>13:10 | 1.0                   | 3.2                   | 0.0             | 0.0                 | 2.0                 | 2.3                | 2.5                   | 0.0          | Release conductor RT and pull above conductor housing. Clean string. POOS and L/D RT. | BH,ODS,Schlum |
| 11.Apr.2022<br>13:10 | 11.Apr.2022<br>13:10 | 4.0                   | 3.3                   | 0.0             | 0.0                 | 0.0                 | 0.0                | 2.8                   | 0.0          | P/U and rack 26" BHA                                                                  | ODS,Schlum    |
| 11.Apr.2022<br>13:10 | 11.Apr.2022<br>13:10 | 0.0                   | 3.3                   |                 | 0.0                 | 2.0                 | 0.0                | 2.8                   | 0.0          | Waiting for access to MAIN well center.                                               | ODS           |
| 11.Apr.2022<br>13:10 | 11.Apr.2022<br>18:35 | 2.0                   | 3.4                   | 0.0             | 0.0                 | 3.0                 | 5.4                | 2.8                   | 0.0          | RIS with 26" BHA                                                                      | ODS           |
| 11.Apr.2022<br>13:10 | 11.Apr.2022<br>13:10 | 2.0                   | 3.5                   | 0.0             | 0.0                 | 0.5                 | 0.0                | 2.8                   | 0.0          | Move MAIN well center over well                                                       | ODS,Schlum    |



Doc. No. 2022-013511

Rev. no.: 0 Valid from: Dec 2022

| Start time           | End time             | Budget<br>time<br>hrs | Acc<br>budget<br>days | Target time hrs | Acc<br>tech<br>days | Plan<br>time<br>hrs | Act<br>time<br>hrs | Acc<br>actual<br>days | Down<br>time | Description                                                         | Companies         |
|----------------------|----------------------|-----------------------|-----------------------|-----------------|---------------------|---------------------|--------------------|-----------------------|--------------|---------------------------------------------------------------------|-------------------|
| 11.Apr.2022<br>18:35 | 11.Apr.2022<br>18:35 | 0.0                   | 3.5                   | 0.0             | 0.0                 | 0.0                 | 0.0                | 2.8                   | 0.0          | WOC prior to drilling out conductor shoe.                           | ODS,Schlum        |
| 11.Apr.2022<br>18:35 | 11.Apr.2022<br>19:20 | 0.0                   | 3.5                   | 0.0             | 0.0                 | 2.0                 | 0.8                | 2.8                   | 0.0          | Drill out 36" conductor shoe and clean out rathole                  | ODS,Schlum        |
| 11.Apr.2022<br>19:20 | 18.Apr.2022<br>04:20 | 223.0                 | 9.3                   | 0.0             | 0.0                 | 137.4               | 153.2              | 6.4                   | 8.6          | 26" [NO 34/9-1 S]                                                   |                   |
| 11.Apr.2022<br>19:20 | 12.Apr.2022<br>17:40 | 39.3                  | 5.1                   | 0.0             | 0.0                 | 15.0                | 22.3               | 3.7                   | 1.0          | Drill 26" hole to TD at +/- 1300 m (Gross ROP 70 m/hr)              | ODS,Schlum        |
| 12.Apr.2022<br>17:40 | 12.Apr.2022<br>20:25 | 3.0                   | 5.3                   | 0.0             | 0.0                 | 3.5                 | 2.8                | 3.9                   | 0.0          | Circulate hole clean and flowcheck                                  | ODS,Schlum        |
| 12.Apr.2022<br>20:25 | 12.Apr.2022<br>23:00 | 3.0                   | 5.4                   | 0.0             | 0.0                 | 1.5                 | 2.6                | 4.0                   | 0.0          | Displace to 1.30 sg displacement mud                                | ODS,Schlum        |
| 12.Apr.2022<br>23:00 | 13.Apr.2022<br>03:30 | 5.0                   | 5.6                   | 0.0             | 0.0                 | 4.0                 | 4.5                | 4.1                   | 0.0          | POOH to seabed with 26" BHA                                         | ODS,Schlum        |
| 13.Apr.2022<br>03:30 | 13.Apr.2022<br>04:30 | 1.0                   | 5.6                   | 0.0             | 0.0                 | 1.0                 | 1.0                | 4.2                   | 0.0          | Move rig to have AUX above hole (Clean and clear + dropscheck)      | OWS,ODS,Schlum    |
| 13.Apr.2022<br>04:30 | 13.Apr.2022<br>10:40 | 10.0                  | 6.0                   | 0.0             | 0.0                 | 6.0                 | 6.2                | 4.4                   | 0.0          | Stab 20" casing into conductor housing and continue to run casing   | OWS,ODS,Schlum    |
| 13.Apr.2022<br>10:40 | 13.Apr.2022<br>12:00 | 3.0                   | 6.2                   | 0.0             | 0.0                 | 1.8                 | 1.3                | 4.5                   | 0.0          | Change handling equipment, P/U and M/U wellhead                     | OWS,BH,ODS,Schlum |
| 13.Apr.2022<br>12:00 | 13.Apr.2022<br>14:30 | 4.0                   | 6.3                   | 0.0             | 0.0                 | 1.0                 | 2.5                | 4.6                   | 0.0          | RIH on landing string with 20" casing to TD                         | BH,ODS,Schlum     |
| 13.Apr.2022<br>14:30 | 13.Apr.2022<br>16:30 | 3.0                   | 6.5                   | 0.0             | 0.0                 | 1.3                 | 2.0                | 4.7                   | 0.0          | Install cement head and land 18 3/4" wellhead in conductor housing. | BH,ODS,Schlum     |
| 13.Apr.2022<br>16:30 | 13.Apr.2022<br>17:50 | 1.0                   | 6.5                   | 0.0             | 0.0                 | 1.0                 | 1.3                | 4.7                   | 0.0          | Circulate prior to cement job                                       | BH,ODS,Schlum     |



Doc. No. 2022-013511

Rev. no.: 0 Valid from: Dec 2022

| Start time           | End time             | Budget<br>time | Acc<br>budget | Target time | Acc<br>tech | Plan<br>time | Act<br>time | Acc<br>actual | Down | Description                                                        | Companies     |
|----------------------|----------------------|----------------|---------------|-------------|-------------|--------------|-------------|---------------|------|--------------------------------------------------------------------|---------------|
|                      |                      | hrs            | days          | hrs         | days        | hrs          | hrs         | days          | time |                                                                    |               |
| 13.Apr.2022<br>17:50 | 14.Apr.2022<br>00:30 | 8.0            | 6.8           | 0.0         | 0.0         | 6.5          | 6.7         | 5.0           | 0.5  | Cement 20" casing to seabed                                        | BH,ODS,Schlum |
| 14.Apr.2022<br>00:30 | 14.Apr.2022<br>02:05 | 1.0            | 6.9           | 0.0         | 0.0         | 0.5          | 1.6         | 5.1           | 0.0  | L/D cement head                                                    | BH,ODS,Schlum |
| 14.Apr.2022<br>02:05 | 14.Apr.2022<br>04:00 | 1.0            | 6.9           | 0.0         | 0.0         | 0.5          | 1.9         | 5.2           | 0.0  | Release RT and pull above wellhead.                                | BH,ODS,Schlum |
| 14.Apr.2022<br>04:00 | 14.Apr.2022<br>05:40 | 5.0            | 7.1           | 0.0         | 0.0         | 3.0          | 1.7         | 5.2           | 0.0  | Continue POOS with RT and L/D same                                 | BH,ODS,Schlum |
| 14.Apr.2022<br>05:40 | 16.Apr.2022<br>01:30 | 62.7           | 9.7           | 0.0         | 0.0         | 45.0         | 43.8        | 7.1           | 0.0  | In between well maintenance BOP (est 7 days from start of project) | ODS,Schlum    |
| 16.Apr.2022<br>01:30 | 16.Apr.2022<br>04:20 | 4.0            | 9.9           | 0.0         | 0.0         | 1.0          | 2.8         | 7.2           | 0.0  | Prepare to run BOP                                                 | ODS           |
| 16.Apr.2022<br>04:20 | 16.Apr.2022<br>13:30 | 20.0           | 10.7          | 0.0         | 0.0         | 10.0         | 9.2         | 7.6           | 0.0  | Run BOP                                                            | ODS,Schlum    |
| 16.Apr.2022<br>13:30 | 16.Apr.2022<br>16:20 | 10.0           | 11.2          | 0.0         | 0.0         | 8.0          | 2.8         | 7.7           | 0.3  | Prepare to land BOP                                                | ODS           |
| 16.Apr.2022<br>16:20 | 16.Apr.2022<br>18:00 | 0.0            | 11.2          | 0.0         | 0.0         | 0.9          | 1.7         | 7.7           | 0.0  | Land BOP and perform overpull test.                                | ODS,Schlum    |
| 16.Apr.2022<br>18:00 | 16.Apr.2022<br>18:00 | 0.0            | 11.2          | 0.0         | 0.0         | 0.0          | 0.0         | 7.7           | 0.0  | Offline: Test connector and 20" casing.                            | ODS,Schlum    |
| 16.Apr.2022<br>18:00 | 16.Apr.2022<br>19:10 | 2.0            | 11.2          | 0.0         | 0.0         | 1.1          | 1.2         | 7.8           | 0.0  | Stroke out slip joint and L/D landing joint                        | ODS,Schlum    |
| 16.Apr.2022<br>19:10 | 16.Apr.2022<br>21:30 | 2.0            | 11.3          | 0.0         | 0.0         | 1.3          | 2.3         | 7.9           | 0.0  | P/U and M/U diverter. Test diverter                                | ODS,Schlum    |
| 16.Apr.2022<br>21:30 | 16.Apr.2022<br>23:00 | 3.0            | 11.4          | 0.0         | 0.0         | 5.5          | 1.5         | 8.0           | 0.0  | R/D diverter RT and riser spider.                                  | ODS,Schlum    |

Classification: Restricted Status: Final



Page 120 of 196

Final well report,
Pilot well NO 34/9-U-1
and Exploration well NO 34/9-1 S Cambozola

Doc. No. 2022-013511

| Start time           | End time             | Budget<br>time<br>hrs | Acc<br>budget<br>days | Target time hrs | Acc<br>tech<br>days | Plan<br>time<br>hrs | Act<br>time<br>hrs | Acc actual days | Down<br>time | Description                                                                                           | Companies  |
|----------------------|----------------------|-----------------------|-----------------------|-----------------|---------------------|---------------------|--------------------|-----------------|--------------|-------------------------------------------------------------------------------------------------------|------------|
| 16.Apr.2022<br>23:00 | 17.Apr.2022<br>02:10 | 0.0                   | 11.4                  | 0.0             | 0.0                 | 0.0                 | 3.2                | 8.1             | 0.0          | Rig down riser handling equipment                                                                     | ODS,Schlum |
| 17.Apr.2022<br>02:10 | 17.Apr.2022<br>03:20 | 0.0                   | 11.4                  | 0.0             | 0.0                 | 0.0                 | 1.2                | 8.1             | 0.0          | Pressure test of surface equipment                                                                    | ODS,Schlum |
| 17.Apr.2022<br>03:20 | 17.Apr.2022<br>08:20 | 12.0                  | 11.9                  | 0.0             | 0.0                 | 7.0                 | 5.0                | 8.3             | 0.5          | RIH with 17 1/2" BHA on DP and tag TOC. Func test diverter. Displace well. Perform Choke/Strip drill. | ODS,Schlum |
| 17.Apr.2022<br>08:20 | 17.Apr.2022<br>18:20 | 10.0                  | 12.4                  | 0.0             | 0.0                 | 2.0                 | 10.0               | 8.8             | 0.0          | Drill shoetrack.                                                                                      | ODS,Schlum |
| 17.Apr.2022<br>18:20 | 17.Apr.2022<br>20:30 | 10.0                  | 12.8                  | 0.0             | 0.0                 | 1.5                 | 2.2                | 8.9             | 0.0          | Drill 3 m new formation & Perform FIT                                                                 | ODS,Schlum |
| 17.Apr.2022<br>20:30 | 18.Apr.2022<br>00:20 | 0.0                   | 12.8                  | 0.0             | 0.0                 | 3.0                 | 3.8                | 9.0             | 3.5          | Unplanned: POOH to replaced failed MWD tool                                                           | ODS,Schlum |
| 18.Apr.2022<br>00:20 | 18.Apr.2022<br>03:05 | 0.0                   | 12.8                  | 0.0             | 0.0                 | 3.0                 | 2.8                | 9.1             | 2.8          | Unplanned: RIH with backup 17 1/2" BHA                                                                | ODS,Schlum |
| 18.Apr.2022<br>03:05 | 18.Apr.2022<br>04:20 | 0.0                   | 12.8                  | 0.0             | 0.0                 | 1.5                 | 1.3                | 9.2             | 0.0          | Unplanned: Perform new FIT                                                                            | ODS,Schlum |
| 18.Apr.2022<br>04:20 | 25.Apr.2022<br>08:15 | 390.6                 | 16.3                  | 0.0             | 0.0                 | 165.3               | 172.1              | 7.2             | 0.0          | 17 1/2" [NO 34/9-1 S]                                                                                 |            |
| 18.Apr.2022<br>04:20 | 18.Apr.2022<br>04:20 | 0.0                   | 0.0                   | 0.0             | 0.0                 | 0.0                 | 0.0                | 0.0             | 0.0          | 17 1/2" x 20" [NO 34/9-1 S]                                                                           |            |
| 18.Apr.2022<br>04:20 | 20.Apr.2022<br>02:40 | 207.6                 | 21.4                  | 0.0             | 0.0                 | 50.0                | 46.3               | 11.1            | 0.0          | Drill 17 1/2" hole to section TD. (Gross ROP: 33 m/hr)                                                | ODS,Schlum |
| 18.Apr.2022<br>04:20 | 18.Apr.2022<br>04:20 | 0.0                   | 21.4                  |                 | 0.0                 | 0.0                 | 0.0                | 11.1            | 0.0          | Contingency hole section for Running 17" Liner                                                        | ODS        |



Page 121 of 196

Final well report,
Pilot well NO 34/9-U-1
and Exploration well NO 34/9-1 S Cambozola

Doc. No. 2022-013511

Valid from: Dec 2022

| Start time           | End time             | Budget<br>time<br>hrs | Acc<br>budget<br>days | Target time hrs | Acc<br>tech<br>days | Plan<br>time<br>hrs | Act time hrs | Acc<br>actual<br>days | Down<br>time | Description                                                                | Companies       |
|----------------------|----------------------|-----------------------|-----------------------|-----------------|---------------------|---------------------|--------------|-----------------------|--------------|----------------------------------------------------------------------------|-----------------|
| 20.Apr.2022<br>02:40 | 20.Apr.2022<br>08:20 | 6.0                   | 21.7                  | 0.0             | 0.0                 | 3.0                 | 5.7          | 11.3                  | 0.0          | Circulate hole clean                                                       | ODS,Schlum      |
| 20.Apr.2022<br>08:20 | 20.Apr.2022<br>14:35 | 16.0                  | 22.3                  | 0.0             | 0.0                 | 8.0                 | 6.3          | 11.6                  | 0.0          | POOH and R/B 17 1/2" BHA                                                   | ODS,Schlum      |
| 20.Apr.2022<br>14:35 | 20.Apr.2022<br>17:30 | 6.0                   | 22.6                  | 0.0             | 0.0                 | 5.0                 | 2.9          | 11.7                  | 0.0          | M/U and RIH MPT tool. Pull free and POOH with Bore Protector. L/D the same | ODS,GEOG,Schlum |
| 20.Apr.2022<br>14:35 | 20.Apr.2022<br>14:35 | 0.0                   | 22.6                  |                 | 0.0                 | 0.0                 | 0.0          | 11.7                  | 0.0          | Optional pressure points in Lista fm                                       | ODS,Schlum      |
| 20.Apr.2022<br>14:35 | 20.Apr.2022<br>14:35 | 8.0                   | 22.9                  |                 | 0.0                 | 0.0                 | 0.0          | 11.6                  | 0.0          | Cancelled: Caliper log                                                     | ODS,Schlum      |
| 20.Apr.2022<br>17:30 | 20.Apr.2022<br>19:30 | 2.0                   | 23.0                  | 0.0             | 0.0                 | 1.0                 | 2.0          | 11.8                  | 0.0          | R/U casing handling equipment                                              | ODS             |
| 20.Apr.2022<br>19:30 | 20.Apr.2022<br>19:45 | 0.0                   | 23.0                  | 0.0             | 0.0                 | 0.0                 | 0.3          | 11.8                  | 0.0          | M/U 14" shoetrack joints                                                   | ODS,Schlum      |
| 20.Apr.2022<br>19:45 | 21.Apr.2022<br>09:05 | 24.0                  | 24.0                  | 0.0             | 0.0                 | 14.0                | 13.3         | 12.4                  | 0.0          | RIH with 14" shoe track and casing joints (Stands -8.4 stds/hr)            | ODS,Schlum      |
| 21.Apr.2022<br>09:05 | 21.Apr.2022<br>11:00 | 3.0                   | 24.1                  | 0.0             | 0.0                 | 2.5                 | 1.9          | 12.5                  | 0.0          | Change handling equipment. P/U and M/U casing hanger                       | ODS,Schlum      |
| 21.Apr.2022<br>11:00 | 21.Apr.2022<br>14:25 | 10.0                  | 24.6                  | 0.0             | 0.0                 | 2.5                 | 3.4          | 12.6                  | 0.0          | RIH with 14" casing on 5 7/8" LS                                           | ODS,Schlum      |
| 21.Apr.2022<br>14:25 | 21.Apr.2022<br>14:35 | 1.0                   | 24.6                  | 0.0             | 0.0                 | 0.5                 | 0.2          | 12.6                  | 0.0          | M/U cement head                                                            | ODS,Schlum      |
| 21.Apr.2022<br>14:35 | 21.Apr.2022<br>15:40 | 2.0                   | 24.7                  | 0.0             | 0.0                 | 1.0                 | 1.1          | 12.7                  | 0.0          | Land casing hanger                                                         | ODS,GEOG,Schlum |

Rev. no.: 0



Doc. No. 2022-013511

Rev. no.: 0 Valid from: Dec 2022

| Start time           | End time             | Budget<br>time<br>hrs | Acc<br>budget<br>days | Target time hrs | Acc<br>tech<br>days | Plan<br>time<br>hrs | Act<br>time<br>hrs | Acc actual days | Down<br>time | Description                                                                | Companies       |
|----------------------|----------------------|-----------------------|-----------------------|-----------------|---------------------|---------------------|--------------------|-----------------|--------------|----------------------------------------------------------------------------|-----------------|
| 21.Apr.2022<br>15:40 | 21.Apr.2022<br>18:35 | 3.0                   | 24.8                  | 0.0             | 0.0                 | 2.0                 | 2.9                | 12.8            | 0.0          | Circulate prior to cement job                                              | ODS,Schlum      |
| 21.Apr.2022<br>18:35 | 22.Apr.2022<br>03:15 | 10.0                  | 25.2                  | 0.0             | 0.0                 | 6.0                 | 8.7                | 13.1            | 0.0          | Cement 14" casing                                                          | ODS,Schlum      |
| 22.Apr.2022<br>03:15 | 22.Apr.2022<br>10:15 | 0.0                   | 25.2                  | 0.0             | 0.0                 | 11.0                | 7.0                | 13.4            | 0.0          | Not planned: WOC (float not holding)                                       | ODS             |
| 22.Apr.2022<br>10:15 | 22.Apr.2022<br>11:15 | 3.0                   | 25.3                  | 0.0             | 0.0                 | 1.5                 | 1.0                | 13.5            | 0.0          | Set and test seal assembly                                                 | ODS,GEOG,Schlum |
| 22.Apr.2022<br>11:15 | 22.Apr.2022<br>12:35 | 6.0                   | 25.6                  | 0.0             | 0.0                 | 2.0                 | 1.3                | 13.5            | 0.0          | Release RT, POOH and L/D same                                              | ODS,GEOG,Schlum |
| 22.Apr.2022<br>12:35 | 22.Apr.2022<br>13:50 | 8.0                   | 25.9                  | 0.0             | 0.0                 | 3.5                 | 1.3                | 13.6            | 0.0          | M/U and RIH with 14" wear bushing and BOP test tool. Set WB and test tool. | ODS,GEOG,Schlum |
| 22.Apr.2022<br>13:50 | 23.Apr.2022<br>04:00 | 10.0                  | 26.3                  | 0.0             | 0.0                 | 9.0                 | 14.2               | 14.2            | 0.0          | BOP pressure test including shear rams - 14 days interval                  | ODS             |
| 23.Apr.2022<br>04:00 | 23.Apr.2022<br>14:15 | 0.0                   | 26.3                  | 0.0             | 0.0                 | 6.0                 | 10.3               | 14.6            | 0.0          | Clean-out run to tag TOC inside casing                                     | ODS,Schlum      |
| 23.Apr.2022<br>14:15 | 23.Apr.2022<br>14:15 | 0.0                   | 26.3                  |                 | 0.0                 | 2.0                 | 0.0                | 14.6            | 0.0          | EHBS (BOP) test                                                            | ODS,Schlum      |
| 23.Apr.2022<br>14:15 | 23.Apr.2022<br>14:15 | 0.0                   | 26.3                  |                 | 0.0                 | 0.0                 | 0.0                | 14.6            | 0.0          | Optional: WOC for logging                                                  | ODS             |
| 23.Apr.2022<br>14:15 | 23.Apr.2022<br>18:15 | 12.0                  | 26.8                  | 0.0             | 0.0                 | 2.5                 | 4.0                | 14.8            | 0.0          | Perform Rig-up test of 15K psi Simplified kick assembly                    | ODS             |
| 23.Apr.2022<br>18:15 | 24.Apr.2022<br>05:40 | 12.0                  | 27.3                  | 0.0             | 0.0                 | 10.0                | 11.4               | 15.2            | 0.0          | Perform IBC/CBL log inside 14" casing                                      | ODS             |
| 24.Apr.2022<br>05:40 | 24.Apr.2022<br>07:45 | 1.0                   | 27.4                  | 0.0             | 0.0                 | 2.0                 | 2.1                | 15.3            | 0.0          | Pressure test 14" casing and WH connector against BSR                      | ODS             |

Classification: Restricted Status: Final



Page 123 of 196

Final well report,
Pilot well NO 34/9-U-1
and Exploration well NO 34/9-1 S Cambozola

Doc. No. 2022-013511

Valid from: Dec 2022

Rev. no.: 0

| Start time           | End time             | Budget<br>time<br>hrs | Acc<br>budget<br>days | Target time hrs | Acc<br>tech<br>days | Plan<br>time<br>hrs | Act<br>time<br>hrs | Acc<br>actual<br>days | Down<br>time | Description                                                                   | Companies  |
|----------------------|----------------------|-----------------------|-----------------------|-----------------|---------------------|---------------------|--------------------|-----------------------|--------------|-------------------------------------------------------------------------------|------------|
| 24.Apr.2022<br>07:45 | 24.Apr.2022<br>09:35 | 0.0                   | 27.4                  | 0.0             | 0.0                 | 2.0                 | 1.8                | 15.4                  | 0.0          | Pressure test top drive                                                       | ODS        |
| 24.Apr.2022<br>09:35 | 24.Apr.2022<br>17:45 | 16.0                  | 28.1                  | 0.0             | 0.0                 | 10.0                | 8.2                | 15.7                  | 0.0          | M/U 12 1/4" BHA and RIH to above shoetrack. Displace to new Mud               | ODS,Schlum |
| 24.Apr.2022<br>17:45 | 24.Apr.2022<br>21:20 | 12.0                  | 28.6                  | 0.0             | 0.0                 | 3.0                 | 3.6                | 15.9                  | 0.0          | Perform specific Finger-printing & well control drills                        | ODS,Schlum |
| 24.Apr.2022<br>21:20 | 25.Apr.2022<br>01:10 | 6.0                   | 28.8                  | 0.0             | 0.0                 | 3.0                 | 3.8                | 16.0                  | 0.0          | Drill-out Shoetrack                                                           | ODS,Schlum |
| 25.Apr.2022<br>01:10 | 25.Apr.2022<br>01:30 | 6.0                   | 29.1                  | 0.0             | 0.0                 | 1.0                 | 0.3                | 16.1                  | 0.0          | Drill 3 m new fm                                                              | ODS,Schlum |
| 25.Apr.2022<br>01:30 | 25.Apr.2022<br>08:15 | 0.0                   | 29.1                  | 0.0             | 0.0                 | 1.3                 | 6.8                | 16.3                  | 0.0          | Take XLOT                                                                     | ODS,Schlum |
| 25.Apr.2022<br>08:15 | 04.May.2022<br>15:30 | 342.1                 | 14.3                  | 0.0             | 0.0                 | 162.3               | 223.6              | 9.3                   | 80.6         | 12 1/4" x 13 1/2" [NO 34/9-1 S]                                               |            |
| 25.Apr.2022<br>08:15 | 26.Apr.2022<br>10:50 | 105.1                 | 33.4                  | 0.0             | 0.0                 | 43.0                | 26.6               | 17.5                  | 0.5          | Drill to section TD. Gross ROP: 12 m/hr                                       | ODS,Schlum |
| 26.Apr.2022<br>10:50 | 26.Apr.2022<br>13:30 | 10.0                  | 33.9                  | 0.0             | 0.0                 | 3.0                 | 2.7                | 17.6                  | 0.0          | De-activate upper reamer. Pull up, activate rat hole eliminator and UR to TD. | ODS,Schlum |
| 26.Apr.2022<br>13:30 | 26.Apr.2022<br>15:50 | 10.0                  | 34.3                  | 0.0             | 0.0                 | 3.0                 | 2.3                | 17.7                  | 0.0          | Circulate hole clean                                                          | ODS,Schlum |
| 26.Apr.2022<br>15:50 | 26.Apr.2022<br>16:45 | 12.0                  | 34.8                  | 0.0             | 0.0                 | 1.0                 | 0.9                | 17.7                  | 0.0          | Flow check & short trip (if required in DOP)                                  | ODS,Schlum |
| 26.Apr.2022<br>16:45 | 27.Apr.2022<br>03:30 | 32.0                  | 36.1                  | 0.0             | 0.0                 | 10.0                | 10.8               | 18.1                  | 0.0          | POOH and R/B 12 1/4" x 13 1/2" BHA                                            | ODS,Schlum |



Doc. No. 2022-013511

Valid from: Dec 2022 Rev. no.: 0

|                      |                      | Budget | Acc              | Target         | Acc             | Plan           | Act            | Acc              | Down |                                        |                 |
|----------------------|----------------------|--------|------------------|----------------|-----------------|----------------|----------------|------------------|------|----------------------------------------|-----------------|
| Start time           | End time             | time   | budget           | time           | tech            | time           | time           | actual           | time | Description                            | Companies       |
| 27.Apr.2022<br>03:30 | 27.Apr.2022<br>04:35 | 4.0    | <b>days</b> 36.3 | <b>hrs</b> 0.0 | <b>days</b> 0.0 | <b>hrs</b> 2.0 | <b>hrs</b> 1.1 | <b>days</b> 18.2 | 0.0  | R/U casing handling equipment          | ODS             |
| 27.Apr.2022<br>04:35 | 27.Apr.2022<br>04:35 | 0.0    | 36.3             | 0.0            | 0.0             | 0.0            | 0.0            | 18.5             | 0.0  | M/U 11 3/4" shoetrack joints           | Hall,ODS,Schlum |
| 27.Apr.2022<br>04:35 | 27.Apr.2022<br>12:00 | 10.0   | 36.7             | 0.0            | 0.0             | 3.0            | 7.4            | 18.5             | 0.5  | Run 11 3/4" liner (30 jnts/hr)         | ODS,Schlum      |
| 27.Apr.2022<br>12:00 | 27.Apr.2022<br>12:00 | 1.0    | 36.7             | 0.0            | 0.0             | 0.3            | 0.0            | 18.5             | 0.0  | Change handling equipment              | ODS             |
| 27.Apr.2022<br>12:00 | 27.Apr.2022<br>12:45 | 3.0    | 36.9             | 0.0            | 0.0             | 1.5            | 0.8            | 18.5             | 0.0  | M/U Halliburton Versaflex liner hanger | Hall,ODS,Schlum |
| 27.Apr.2022<br>12:45 | 27.Apr.2022<br>14:15 | 24.0   | 37.9             | 0.0            | 0.0             | 9.0            | 1.5            | 18.6             | 0.0  | RIH with Liner on 5 7/8" string        | Hall,ODS,Schlum |
| 27.Apr.2022<br>14:15 | 28.Apr.2022<br>00:00 | 0.0    | 37.9             | 0.0            | 0.0             | 0.0            | 9.8            | 19.0             | 9.8  | Unplanned:POOH with 11 3/4" liner      | ODS,Hall,Schlum |
| 28.Apr.2022<br>00:00 | 28.Apr.2022<br>11:25 | 0.0    | 37.9             | 0.0            | 0.0             | 0.0            | 11.4           | 19.5             | 11.4 | Unplanned:Re-run 11 3/4" liner         | ODS,Hall,Schlum |
| 28.Apr.2022<br>11:25 | 29.Apr.2022<br>11:00 | 0.0    | 37.9             | 0.0            | 0.0             | 0.0            | 23.6           | 20.5             | 0.2  | Unplanned:RIH with liner on 5 7/8" LS  | ODS,Hall,Schlum |
| 29.Apr.2022<br>11:00 | 29.Apr.2022<br>12:40 | 4.0    | 38.0             | 0.0            | 0.0             | 2.0            | 1.7            | 20.5             | 0.0  | M/U cement head. Wash down and tag     | Hall,ODS,Schlum |
| 29.Apr.2022<br>12:40 | 29.Apr.2022<br>13:30 | 5.0    | 38.2             | 0.0            | 0.0             | 2.0            | 0.8            | 20.6             | 0.0  | Circulate prior to cement job          | Hall,ODS,Schlum |
| 29.Apr.2022<br>13:30 | 29.Apr.2022<br>16:05 | 8.0    | 38.6             | 0.0            | 0.0             | 2.0            | 2.6            | 20.7             | 0.0  | Cement Liner                           | Hall,ODS,Schlum |
| 29.Apr.2022<br>16:05 | 29.Apr.2022<br>17:00 | 4.0    | 38.7             | 0.0            | 0.0             | 2.0            | 0.9            | 20.7             | 0.0  | Set Expandable liner hanger            | Hall,ODS,Schlum |



Doc. No. 2022-013511

Valid from: Dec 2022 Rev. no.: 0

| Start time           | End time             | Budget time | Acc<br>budget | Target time | Acc<br>tech | Plan<br>time | Act<br>time | Acc actual | Down<br>time | Description                                                                | Companies       |
|----------------------|----------------------|-------------|---------------|-------------|-------------|--------------|-------------|------------|--------------|----------------------------------------------------------------------------|-----------------|
|                      |                      | hrs         | days          | hrs         | days        | hrs          | hrs         | days       | time         |                                                                            |                 |
| 29.Apr.2022<br>17:00 | 30.Apr.2022<br>01:00 | 18.0        | 39.5          | 0.0         | 0.0         | 8.5          | 8.0         | 21.0       | 0.0          | Release RT & POOH with RT and L/D same                                     | Hall,ODS,Schlum |
| 30.Apr.2022<br>01:00 | 30.Apr.2022<br>07:05 | 0.0         | 39.5          | 0.0         | 0.0         | 8.0          | 6.1         | 21.3       | 0.0          | Optional: WOC for logging (total 17 hrs from cement is displaced in place) | ODS,Schlum      |
| 30.Apr.2022<br>01:00 | 30.Apr.2022<br>01:00 | 12.0        | 40.0          | 0.0         | 0.0         | 0.0          | 0.0         | 21.0       | 0.0          | Pressure test BOP                                                          | ODS,GEOG,Schlum |
| 30.Apr.2022<br>07:05 | 30.Apr.2022<br>16:00 | 20.0        | 40.8          | 0.0         | 0.0         | 7.0          | 8.9         | 21.7       | 0.0          | Perform IBC/CBL log for 11 3/4" Liner to verify P&A barriers               | ODS             |
| 30.Apr.2022<br>16:00 | 30.Apr.2022<br>21:25 | 2.0         | 40.9          | 0.0         | 0.0         | 1.0          | 5.4         | 21.9       | 0.0          | Pressure test Liner according to WOC time                                  | ODS             |
| 30.Apr.2022<br>21:25 | 01.May.2022<br>07:20 | 16.0        | 41.6          | 0.0         | 0.0         | 10.0         | 9.9         | 22.3       | 0.0          | M/U drilling BHA and RIH to above shoetrack.                               | ODS,Schlum      |
| 01.May.2022<br>07:20 | 01.May.2022<br>11:50 | 24.0        | 42.6          | 0.0         | 0.0         | 4.0          | 4.5         | 22.5       | 0.0          | Displace to New mud from Rheguard to BaraECD                               | ODS             |
| 01.May.2022<br>11:50 | 01.May.2022<br>15:30 | 8.0         | 42.9          | 0.0         | 0.0         | 6.0          | 3.7         | 22.6       | 0.0          | Perform HPHT Finger-printing & well control drills                         | ODS,Schlum      |
| 01.May.2022<br>15:30 | 01.May.2022<br>18:05 | 6.0         | 43.1          | 0.0         | 0.0         | 4.0          | 2.6         | 22.8       | 0.0          | Drill out shoetrack                                                        | Hall,ODS,Schlum |
| 01.May.2022<br>18:05 | 02.May.2022<br>09:40 | 4.0         | 43.3          | 0.0         | 0.0         | 2.0          | 15.6        | 23.4       | 13.8         | Drill 3 m new Fm and Perform FIT                                           | Hall,ODS,Schlum |
| 02.May.2022<br>09:40 | 02.May.2022<br>15:50 | 0.0         | 43.3          | 0.0         | 0.0         | 0.0          | 6.2         | 23.7       | 6.2          | Unplanned: POOH with drilling BHA                                          | ODS,Schlum      |
| 02.May.2022<br>15:50 | 02.May.2022<br>16:20 | 0.0         | 43.3          | 0.0         | 0.0         | 0.0          | 0.5         | 23.7       | 0.5          | Unplanned: M/U cement stinger                                              | ODS,Schlum      |
| 02.May.2022<br>16:20 | 02.May.2022<br>20:30 | 0.0         | 43.3          | 0.0         | 0.0         | 0.0          | 4.2         | 23.9       | 4.2          | Unplanned: RIH with cement stinger                                         | ODS,Schlum      |



Page 126 of 196

Final well report,
Pilot well NO 34/9-U-1
and Exploration well NO 34/9-1 S Cambozola

Doc. No. 2022-013511

| Start time           | End time             | Budget<br>time | Acc<br>budget | Target time | Acc<br>tech | Plan<br>time | Act<br>time | Acc<br>actual | Down | Description                                                                   | Companies       |
|----------------------|----------------------|----------------|---------------|-------------|-------------|--------------|-------------|---------------|------|-------------------------------------------------------------------------------|-----------------|
| Start time           | Liid tiille          | hrs            | days          | hrs         | days        | hrs          | hrs         | days          | time | Description                                                                   | Companies       |
| 02.May.2022<br>20:30 | 03.May.2022<br>12:00 | 0.0            | 43.3          | 0.0         | 0.0         | 4.0          | 15.5        | 24.5          | 15.5 | Unplanned: Perform shoe squeeze                                               | ODS,Schlum      |
| 03.May.2022<br>12:00 | 03.May.2022<br>15:40 | 0.0            | 43.3          | 0.0         | 0.0         | 4.0          | 3.7         | 24.7          | 3.7  | Unplanned: POOH with cement stinger                                           | ODS,Schlum      |
| 03.May.2022<br>12:00 | 03.May.2022<br>12:00 | 0.0            | 43.3          | 0.0         | 0.0         | 0.0          | 0.0         | 24.7          | 0.0  | Unplanned: WOC                                                                | ODS,Schlum      |
| 03.May.2022<br>15:40 | 04.May.2022<br>01:15 | 0.0            | 43.3          | 0.0         | 0.0         | 8.0          | 9.6         | 25.1          | 0.0  | Unplanned: BOP test                                                           | ODS,Schlum      |
| 04.May.2022<br>01:15 | 04.May.2022<br>08:00 | 0.0            | 43.3          | 0.0         | 0.0         | 7.0          | 6.8         | 25.3          | 6.8  | Unplanned: M/U drilling BHA and RIH to TOC                                    | ODS,Hall,Schlum |
| 04.May.2022<br>08:00 | 04.May.2022<br>10:55 | 0.0            | 43.3          | 0.0         | 0.0         | 4.0          | 2.9         | 25.5          | 2.9  | Unplanned: Drill out cement                                                   | ODS,Hall,Schlum |
| 04.May.2022<br>10:55 | 04.May.2022<br>15:30 | 0.0            | 43.3          | 0.0         | 0.0         | 1.0          | 4.6         | 25.6          | 4.6  | Unplanned: Drill 3m new Fm and perform FIT                                    | ODS,Hall,Schlum |
| 04.May.2022<br>15:30 | 20.May.2022<br>16:55 | 317.8          | 13.2          | 0.0         | 0.0         | 237.0        | 385.8       | 16.1          | 1.3  | 10 5/8" x 12 1/4" [NO 34/9-1 S]                                               |                 |
| 04.May.2022<br>15:30 | 06.May.2022<br>12:00 | 100.8          | 47.5          | 0.0         | 0.0         | 35.0         | 44.5        | 27.5          | 0.0  | Drill to section to 4367 m and Perform OH FIT. Drill to section TD.           | Hall,ODS,Schlum |
| 06.May.2022<br>12:00 | 06.May.2022<br>19:50 | 0.0            | 47.5          | 0.0         | 0.0         | 6.0          | 7.8         | 27.8          | 0.0  | De-activate upper reamer. Pull up, activate rat hole eliminator and UR to TD. | ODS,Hall,Schlum |
| 06.May.2022<br>19:50 | 07.May.2022<br>15:00 | 8.0            | 47.8          | 0.0         | 0.0         | 8.0          | 19.2        | 28.6          | 0.0  | Circulate hole clean and dilute mud to cementing properties                   | Hall,ODS,Schlum |
| 07.May.2022<br>15:00 | 07.May.2022<br>21:40 | 10.0           | 48.3          | 0.0         | 0.0         | 6.0          | 6.7         | 28.9          | 0.0  | Flow check & short trip as per HPHT procedures                                | Hall,ODS,Schlum |



Doc. No. 2022-013511

Valid from: Dec 2022 Rev. no.: 0

| Start time           | End time             | Budget<br>time<br>hrs | Acc<br>budget<br>days | Target time hrs | Acc<br>tech<br>days | Plan<br>time<br>hrs | Act<br>time<br>hrs | Acc actual days | Down<br>time | Description                                                          | Companies           |
|----------------------|----------------------|-----------------------|-----------------------|-----------------|---------------------|---------------------|--------------------|-----------------|--------------|----------------------------------------------------------------------|---------------------|
| 07.May.2022<br>21:40 | 08.May.2022<br>11:30 | 28.0                  | 49.4                  | 0.0             | 0.0                 | 16.0                | 13.8               | 29.5            | 0.0          | Pump & POOH as per DOP and R/B 12 1/4" BHA                           | Hall,ODS,Schlum     |
| 08.May.2022<br>11:30 | 08.May.2022<br>11:30 | 0.0                   | 49.4                  | 0.0             | 0.0                 | 0.0                 | 0.0                | 29.5            | 0.0          | Optional: Perform VSP log                                            | ODS,Schlum          |
| 08.May.2022<br>11:30 | 08.May.2022<br>16:30 | 8.0                   | 49.8                  | 0.0             | 0.0                 | 2.5                 | 5.0                | 29.7            | 0.0          | Retrieve 14" WB                                                      | Hall,ODS,Schlum     |
| 08.May.2022<br>16:30 | 08.May.2022<br>18:30 | 3.0                   | 49.9                  | 0.0             | 0.0                 | 2.0                 | 2.0                | 29.8            | 0.0          | R/U to run 9 7/8" casing                                             | OWS,Hall,ODS,Schlum |
| 08.May.2022<br>18:30 | 08.May.2022<br>19:45 | 0.0                   | 49.9                  | 0.0             | 0.0                 | 0.0                 | 1.3                | 29.8            | 0.0          | M/U shoetrack joints & build casing stands                           | OWS,Hall,ODS,Schlum |
| 08.May.2022<br>19:45 | 09.May.2022<br>02:25 | 0.0                   | 49.9                  | 0.0             | 0.0                 | 5.0                 | 6.7                | 30.1            | 0.3          | RIH with 9 7/8" SLIJ-II casing                                       | OWS,ODS,Schlum      |
| 09.May.2022<br>02:25 | 09.May.2022<br>09:00 | 36.0                  | 51.4                  | 0.0             | 0.0                 | 8.0                 | 6.6                | 30.4            | 0.0          | Continue RIH with 9 7/8" VamTop casing.                              | OWS,ODS,Hall,Schlum |
| 09.May.2022<br>09:00 | 09.May.2022<br>12:00 | 0.0                   | 51.4                  | 0.0             | 0.0                 | 3.0                 | 3.0                | 30.5            | 0.0          | Circulate B/U above top of liner. change bails, LD CRTi, install BX5 | Hall,ODS,Schlum     |
| 09.May.2022<br>12:00 | 09.May.2022<br>19:00 | 0.0                   | 51.4                  | 0.0             | 0.0                 | 5.0                 | 7.0                | 30.8            | 0.0          | Continue RIH with 9 7/8" VamTop casing                               | OWS,Hall,ODS,Schlum |
| 09.May.2022<br>19:00 | 09.May.2022<br>22:20 | 2.0                   | 51.5                  | 0.0             | 0.0                 | 1.5                 | 3.3                | 30.9            | 0.0          | Change handling equipment. P/U and M/U casing hanger                 | Hall,ODS,Schlum     |
| 09.May.2022<br>22:20 | 10.May.2022<br>04:30 | 12.0                  | 52.0                  | 0.0             | 0.0                 | 3.5                 | 6.2                | 31.2            | 0.0          | RIH with 9 7/8" casing on 5 7/8" LS                                  | Hall,ODS,Schlum     |
| 10.May.2022<br>04:30 | 10.May.2022<br>04:40 | 2.0                   | 52.1                  | 0.0             | 0.0                 | 1.0                 | 0.2                | 31.2            | 0.0          | P/U cement head                                                      | Hall,ODS,Schlum     |
| 10.May.2022<br>04:40 | 10.May.2022<br>06:10 | 2.0                   | 52.1                  | 0.0             | 0.0                 | 1.0                 | 1.5                | 31.3            | 0.0          | Land casing hanger                                                   | Hall,ODS            |



Doc. No. 2022-013511

Valid from: Dec 2022 Rev. no.: 0

| Start time           | End time             | Budget<br>time<br>hrs | Acc<br>budget<br>days | Target time hrs | Acc<br>tech<br>days | Plan<br>time<br>hrs | Act<br>time<br>hrs | Acc<br>actual<br>days | Down<br>time | Description                                                 | Companies                |
|----------------------|----------------------|-----------------------|-----------------------|-----------------|---------------------|---------------------|--------------------|-----------------------|--------------|-------------------------------------------------------------|--------------------------|
| 10.May.2022<br>06:10 | 10.May.2022<br>10:20 | 6.0                   | 52.4                  | 0.0             | 0.0                 | 4.0                 | 4.2                | 31.4                  | 0.0          | Circulate prior to cement job                               | Hall,ODS                 |
| 10.May.2022<br>10:20 | 10.May.2022<br>19:15 | 10.0                  | 52.8                  | 0.0             | 0.0                 | 5.0                 | 8.9                | 31.8                  | 1.0          | Pump & displace cement                                      | Hall,ODS,Schlum          |
| 10.May.2022<br>19:15 | 10.May.2022<br>21:15 | 4.0                   | 53.0                  | 0.0             | 0.0                 | 2.0                 | 2.0                | 31.9                  | 0.0          | Set and test seal assembly                                  | Hall,ODS                 |
| 10.May.2022<br>21:15 | 11.May.2022<br>00:45 | 4.0                   | 53.1                  | 0.0             | 0.0                 | 2.5                 | 3.5                | 32.0                  | 0.0          | Release RT, POOH and L/D same                               | Hall,ODS,Schlum          |
| 11.May.2022<br>00:45 | 11.May.2022<br>03:50 | 8.0                   | 53.5                  | 0.0             | 0.0                 | 4.0                 | 3.1                | 32.2                  | 0.0          | Install 10 3/4" WB                                          | Hall,ODS,Schlum          |
| 11.May.2022<br>03:50 | 11.May.2022<br>10:30 | 12.0                  | 54.0                  | 0.0             | 0.0                 | 8.0                 | 6.7                | 32.4                  | 0.0          | BOP test part 1 - PRs and APs                               | ODS,Schlum               |
| 11.May.2022<br>10:30 | 12.May.2022<br>01:15 | 0.0                   | 54.0                  | 0.0             | 0.0                 | 10.0                | 14.8               | 33.1                  | 0.0          | -Planned maintenance on top drive                           | ODS                      |
| 12.May.2022<br>01:15 | 12.May.2022<br>11:30 | 0.0                   | 54.0                  | 0.0             | 0.0                 | 3.0                 | 10.3               | 33.5                  | 0.0          | -BOP test part 2 - BSRs                                     | ODS,Schlum               |
| 12.May.2022<br>11:30 | 12.May.2022<br>20:45 | 16.0                  | 54.6                  | 0.0             | 0.0                 | 8.0                 | 9.3                | 33.9                  | 0.0          | Run ICB/CBL to log 9 7/8" casing                            | Gyrodata,Hall,ODS,Schlum |
| 12.May.2022<br>20:45 | 12.May.2022<br>23:15 | 2.0                   | 54.7                  | 0.0             | 0.0                 | 1.0                 | 2.5                | 34.0                  | 0.0          | Pressure test 9 7/8" casing                                 | Hall,ODS,Schlum          |
| 12.May.2022<br>23:15 | 13.May.2022<br>08:05 | 20.0                  | 55.6                  | 0.0             | 0.0                 | 10.0                | 8.8                | 34.3                  | 0.0          | M/U 8 1/2" drilling BHA and RIH to above shoetrack on 5" DP | Hall,ODS,Schlum          |
| 13.May.2022<br>08:05 | 14.May.2022<br>06:25 | 0.0                   | 55.6                  | 0.0             | 0.0                 | 8.0                 | 22.3               | 35.3                  | 0.0          | Weigh up mud, drill plug set and adjust MW                  | ODS,Schlum               |
| 14.May.2022<br>06:25 | 15.May.2022<br>03:30 | 12.0                  | 56.1                  | 0.0             | 0.0                 | 10.0                | 21.1               | 36.1                  | 0.0          | Perform HPHT Finger-printing & well control drills          | Hall,ODS,Schlum          |



Doc. No. 2022-013511

Valid from: Dec 2022

Rev. no.: 0

| Start time           | End time             | Budget<br>time<br>hrs | Acc<br>budget<br>days | Target time hrs | Acc<br>tech<br>days | Plan<br>time<br>hrs | Act<br>time<br>hrs | Acc<br>actual<br>days | Down<br>time | Description                                                                          | Companies                |
|----------------------|----------------------|-----------------------|-----------------------|-----------------|---------------------|---------------------|--------------------|-----------------------|--------------|--------------------------------------------------------------------------------------|--------------------------|
| 15.May.2022<br>03:30 | 15.May.2022<br>12:45 | 6.0                   | 56.3                  | 0.0             | 0.0                 | 3.0                 | 9.3                | 36.5                  | 0.0          | Drill out shoetrack                                                                  | Hall,ODS,Schlum          |
| 15.May.2022<br>12:45 | 16.May.2022<br>17:15 | 0.0                   | 56.3                  | 0.0             | 0.0                 | 12.0                | 28.5               | 37.7                  | 0.0          | -Losses: Circulate hole clean, POOH and R/B 8 1/2" BHA                               | ODS                      |
| 16.May.2022<br>17:15 | 17.May.2022<br>11:45 | 0.0                   | 56.3                  | 0.0             | 0.0                 | 14.0                | 18.5               | 38.5                  | 0.0          | -R/U WL, Run WL VSP, R/D WL                                                          | Gyrodata,ODS,Hall,Schlum |
| 17.May.2022<br>11:45 | 17.May.2022<br>18:00 | 0.0                   | 56.3                  | 0.0             | 0.0                 | 6.0                 | 6.3                | 38.7                  | 0.0          | -P/U and RIH with cement stinger                                                     | ODS                      |
| 17.May.2022<br>18:00 | 19.May.2022<br>03:50 | 0.0                   | 56.3                  | 0.0             | 0.0                 | 6.0                 | 33.8               | 40.2                  | 0.0          | -Perform squeeze cement around 9 7/8" shoe and WOC                                   | ODS                      |
| 19.May.2022<br>03:50 | 19.May.2022<br>12:50 | 0.0                   | 56.3                  | 0.0             | 0.0                 | 5.0                 | 9.0                | 40.5                  | 0.0          | - POOH with cement stinger                                                           | ODS                      |
| 19.May.2022<br>12:50 | 20.May.2022<br>04:00 | 0.0                   | 56.3                  | 0.0             | 0.0                 | 6.0                 | 15.2               | 41.2                  | 0.0          | -M/U and RIH with 8 1/2" BHA                                                         | ODS                      |
| 20.May.2022<br>04:00 | 20.May.2022<br>13:00 | 0.0                   | 56.3                  | 0.0             | 0.0                 | 3.0                 | 9.0                | 41.5                  | 0.0          | -Drill cement in 9 7/8" shoetrack and Perform rathole FIT                            | ODS                      |
| 20.May.2022<br>13:00 | 20.May.2022<br>16:55 | 6.0                   | 56.6                  | 0.0             | 0.0                 | 3.0                 | 3.9                | 41.7                  | 0.0          | Drill 3 m new Fm and Perform OH FIT                                                  | Hall,ODS                 |
| 20.May.2022<br>16:55 | 28.May.2022<br>10:30 | 282.0                 | 11.8                  | 0.0             | 0.0                 | 119.0               | 185.6              | 7.7                   | 9.6          | 8 1/2" HPHT [NO 34/9-1 S]                                                            |                          |
| 20.May.2022<br>16:55 | 22.May.2022<br>04:40 | 48.0                  | 58.6                  | 0.0             | 0.0                 | 15.0                | 35.7               | 43.2                  | 0.0          | Drill 8 1/2" hole to Top reservoir plus fm for 1st pressure point (Gross ROP 3 m/hr) | Hall,ODS,Schlum          |
| 22.May.2022<br>04:40 | 22.May.2022<br>17:40 | 20.0                  | 59.4                  | 0.0             | 0.0                 | 16.0                | 13.0               | 43.7                  | 0.0          | -Pump and POOH with 8 1/2" BHA                                                       | ODS,Hall,Schlum          |



Doc. No. 2022-013511

Valid from: Dec 2022

Rev. no.: 0

| Start time           | End time             | Budget<br>time<br>hrs | Acc<br>budget<br>days | Target time hrs | Acc<br>tech<br>days | Plan<br>time<br>hrs | Act<br>time<br>hrs | Acc<br>actual<br>days | Down<br>time | Description                                              | Companies           |
|----------------------|----------------------|-----------------------|-----------------------|-----------------|---------------------|---------------------|--------------------|-----------------------|--------------|----------------------------------------------------------|---------------------|
| 22.May.2022<br>17:40 | 23.May.2022<br>00:00 | 12.0                  | 59.9                  | 0.0             | 0.0                 | 7.0                 | 6.3                | 44.0                  | 0.0          | -M/U and RIH with 9 7/8" casing scraper to 4250 m        | ODS,Hall,Schlum     |
| 23.May.2022<br>00:00 | 23.May.2022<br>03:45 | 6.0                   | 60.1                  | 0.0             | 0.0                 | 4.0                 | 3.8                | 44.2                  | 0.0          | -Perform casing scrap run, CBU                           | ODS,Hall,Schlum     |
| 23.May.2022<br>03:45 | 23.May.2022<br>22:00 | 30.0                  | 61.4                  | 0.0             | 0.0                 | 11.0                | 18.3               | 44.9                  | 8.3          | -POOH with casing scraper and L/D                        | ODS,Hall,Schlum     |
| 23.May.2022<br>22:00 | 24.May.2022<br>13:40 | 23.0                  | 62.3                  | 0.0             | 0.0                 | 15.0                | 15.7               | 45.6                  | 1.3          | -M/U and RIH with 7" Liner                               | OWS,ODS,Hall,Schlum |
| 24.May.2022<br>13:40 | 24.May.2022<br>22:00 | 13.0                  | 62.9                  | 0.0             | 0.0                 | 6.0                 | 8.3                | 45.9                  | 0.0          | -Circulate, cement 7" Liner and set 7" Liner             | ODS,Hall,Schlum     |
| 24.May.2022<br>22:00 | 25.May.2022<br>00:20 | 5.0                   | 63.1                  | 0.0             | 0.0                 | 4.0                 | 2.3                | 46.0                  | 0.0          | -Release 7" Liner hanger RT and circulate                | ODS,Hall,Schlum     |
| 25.May.2022<br>00:20 | 25.May.2022<br>06:00 | 9.0                   | 63.5                  | 0.0             | 0.0                 | 4.0                 | 5.7                | 46.2                  | 0.0          | -POOH with Liner RT                                      | ODS,Hall,Schlum     |
| 25.May.2022<br>06:00 | 25.May.2022<br>23:20 | 25.0                  | 64.5                  | 0.0             | 0.0                 | 10.0                | 17.3               | 47.0                  | 0.0          | -BOP test                                                | BH,Hall,ODS,Schlum  |
| 25.May.2022<br>23:20 | 26.May.2022<br>00:30 | 3.0                   | 64.6                  | 0.0             | 0.0                 | 2.0                 | 1.2                | 47.0                  | 0.0          | -Pressure test 7" liner                                  | Hall,ODS,Schlum     |
| 26.May.2022<br>00:30 | 26.May.2022<br>16:35 | 24.0                  | 65.6                  | 0.0             | 0.0                 | 8.0                 | 16.1               | 47.7                  | 0.0          | -M/U and RIH with 6" BHA and perform well control drills | Hall,ODS,Schlum     |
| 26.May.2022<br>16:35 | 27.May.2022<br>21:35 | 45.0                  | 67.5                  | 0.0             | 0.0                 | 10.0                | 29.0               | 48.9                  | 0.0          | -Drill shoetrack and perform fingerprinting.             | Hall,ODS,Schlum     |
| 27.May.2022<br>21:35 | 28.May.2022<br>02:25 | 7.0                   | 67.8                  | 0.0             | 0.0                 | 4.0                 | 4.8                | 49.1                  | 0.0          | -Clean rat hole and drill 3m new formation.              | Hall,ODS,Schlum     |
| 28.May.2022<br>02:25 | 28.May.2022<br>10:30 | 12.0                  | 68.3                  | 0.0             | 0.0                 | 3.0                 | 8.1                | 49.4                  | 0.0          | -Perform FIT.                                            | Hall,ODS,Schlum     |



Doc. No. 2022-013511

| Start time           | End time             | Budget<br>time<br>hrs | Acc<br>budget<br>days | Target time hrs | Acc<br>tech<br>days | Plan<br>time<br>hrs | Act<br>time<br>hrs | Acc<br>actual<br>days | Down<br>time | Description                                                 | Companies       |
|----------------------|----------------------|-----------------------|-----------------------|-----------------|---------------------|---------------------|--------------------|-----------------------|--------------|-------------------------------------------------------------|-----------------|
| 28.May.2022<br>10:30 | 03.Jun.2022<br>18:30 | 437.0                 | 18.2                  | 0.0             | 0.0                 | 79.0                | 152.0              | 6.3                   | 0.0          | 6" HPHT [NO 34/9-1 S]                                       |                 |
| 28.May.2022<br>10:30 | 28.May.2022<br>21:40 | 37.0                  | 69.8                  | 0.0             | 0.0                 | 11.0                | 11.2               | 49.9                  | 0.0          | -Start drilling 6" hole (perfect time to be re-distributed) | Hall,ODS,Schlum |
| 28.May.2022<br>21:40 | 29.May.2022<br>04:50 | 21.0                  | 70.7                  | 0.0             | 0.0                 | 6.0                 | 7.2                | 50.2                  | 0.0          | -Displace well to 2.02sg ESD                                | Hall,ODS,Schlum |
| 29.May.2022<br>04:50 | 01.Jun.2022<br>16:40 | 110.0                 | 75.3                  | 0.0             | 0.0                 | 24.0                | 83.8               | 53.7                  | 0.0          | - Drill 6" hole to core point or TD                         | ODS,Hall,Schlum |
| 01.Jun.2022<br>16:40 | 01.Jun.2022<br>22:45 | 19.0                  | 76.1                  | 0.0             | 0.0                 | 5.0                 | 6.1                | 53.9                  | 0.0          | Circulate Hole clean                                        | Hall,ODS,Schlum |
| 01.Jun.2022<br>22:45 | 02.Jun.2022<br>16:50 | 17.0                  | 76.8                  | 0.0             | 0.0                 | 8.0                 | 18.1               | 54.7                  | 0.0          | Flow check & short trip as per HPHT procedures              | ODS,Hall,Schlum |
| 02.Jun.2022<br>16:50 | 03.Jun.2022<br>10:15 | 45.0                  | 78.7                  | 0.0             | 0.0                 | 15.0                | 17.4               | 55.4                  | 0.0          | Pump & POOH as per DOP and R/B 6" BHA                       | ODS,Hall,Schlum |
| 03.Jun.2022<br>10:15 | 03.Jun.2022<br>11:15 | 3.0                   | 78.8                  | 0.0             | 0.0                 | 1.0                 | 1.0                | 55.5                  | 0.0          | R/U WL equipment                                            | Hall,ODS,Schlum |
| 03.Jun.2022<br>11:15 | 03.Jun.2022<br>17:40 | 14.0                  | 79.4                  | 0.0             | 0.0                 | 8.0                 | 6.4                | 55.7                  | 0.0          | Perform WL run MSIP                                         | ODS,Hall,Schlum |
| 03.Jun.2022<br>17:40 | 03.Jun.2022<br>18:30 | 3.0                   | 79.5                  | 0.0             | 0.0                 | 1.0                 | 0.8                | 55.8                  | 0.0          | R/D WL equipment                                            | Hall,ODS,Schlum |
| 03.Jun.2022<br>18:30 | 19.Jun.2022<br>04:00 | 450.0                 | 18.8                  | 0.0             | 0.0                 | 344.1               | 369.9              | 15.4                  | 32.3         | Permanent P&A (DP) w/ RIG [NO 34/9-1 S]                     |                 |
| 03.Jun.2022<br>18:30 | 03.Jun.2022<br>18:30 | 0.0                   | 79.5                  |                 | 0.0                 | 0.0                 | 0.0                | 55.8                  | 0.0          | Perform Pressure point on WL                                | ODS,Hall,Schlum |
| 03.Jun.2022<br>18:30 | 03.Jun.2022<br>18:30 | 0.0                   | 79.5                  |                 | 0.0                 | 0.0                 | 0.0                | 55.8                  | 0.0          | Short trip as per HPHT procedure                            | Hall,ODS,Schlum |



Doc. No. 2022-013511

Valid from: Dec 2022

| Start time           | End time             | Budget<br>time | Acc<br>budget | Target time | Acc<br>tech | Plan<br>time | Act<br>time | Acc actual | Down | Description                                                        | Companies            |
|----------------------|----------------------|----------------|---------------|-------------|-------------|--------------|-------------|------------|------|--------------------------------------------------------------------|----------------------|
|                      |                      | hrs            | days          | hrs         | days        | hrs          | hrs         | days       | time |                                                                    | ·                    |
| 03.Jun.2022<br>18:30 | 03.Jun.2022<br>18:30 | 168.0          | 86.5          |             | 0.0         | 0.0          | 0.0         | 55.8       | 0.0  | PCP Budget due to change in scope not distributed                  | ODS,Hall,Schlum      |
| 03.Jun.2022<br>18:30 | 03.Jun.2022<br>18:30 | 0.0            | 86.5          |             | 0.0         | 0.0          | 0.0         | 55.8       | 0.0  | Drill 6" section to TD. Avg ROP 5 m/hr (including Pressure points) | ODS,Hall,Schlum      |
| 03.Jun.2022<br>18:30 | 03.Jun.2022<br>18:30 | 0.0            | 86.5          | 0.0         | 0.0         | 0.0          | 0.0         | 55.8       | 0.0  | BOP test                                                           | ODS,Hall,GEOG,Schlum |
| 03.Jun.2022<br>18:30 | 03.Jun.2022<br>18:30 | 0.0            | 86.5          |             | 0.0         | 0.0          | 0.0         | 55.8       | 0.0  | Pump & POOH as per DOP and R/B 6" BHA                              | ODS,Hall,Schlum      |
| 03.Jun.2022<br>18:30 | 03.Jun.2022<br>18:30 | 0.0            | 86.5          |             | 0.0         | 0.0          | 0.0         | 55.8       | 0.0  | Circulate Hole clean and Flow Check                                | ODS,Hall,Schlum      |
| 03.Jun.2022<br>18:30 | 04.Jun.2022<br>03:50 | 12.0           | 87.0          | 0.0         | 0.0         | 10.0         | 9.3         | 56.2       | 0.0  | M/U and RIH with 3.5" cement stinger                               | ODS,Hall,Schlum      |
| 04.Jun.2022<br>03:50 | 04.Jun.2022<br>11:35 | 10.0           | 87.4          | 0.0         | 0.0         | 6.0          | 7.8         | 56.5       | 0.0  | Circulate BU prior to cementing                                    | ODS,Hall,Schlum      |
| 04.Jun.2022<br>11:35 | 04.Jun.2022<br>13:00 | 4.0            | 87.6          | 0.0         | 0.0         | 2.5          | 1.4         | 56.5       | 0.0  | Set cement plug #1                                                 | ODS,Schlum           |
| 04.Jun.2022<br>13:00 | 04.Jun.2022<br>18:00 | 4.0            | 87.8          | 0.0         | 0.0         | 5.0          | 5.0         | 56.7       | 0.0  | Pull out of cement and cut cement inside 7" shoe                   | ODS,Schlum           |
| 04.Jun.2022<br>18:00 | 05.Jun.2022<br>06:30 | 17.0           | 88.5          | 0.0         | 0.0         | 12.5         | 12.5        | 57.3       | 0.0  | POOH with cement stinger                                           | ODS,Schlum           |
| 05.Jun.2022<br>06:30 | 05.Jun.2022<br>14:00 | 9.0            | 88.8          | 0.0         | 0.0         | 7.0          | 7.5         | 57.6       | 0.0  | Added: RIH with 6" dress-off BHA                                   | ODS,Hall,Schlum      |
| 05.Jun.2022<br>14:00 | 05.Jun.2022<br>22:35 | 9.0            | 89.2          | 0.0         | 0.0         | 4.0          | 8.6         | 57.9       | 0.0  | Dress and Tag cement plug #1.<br>Circulate B/U                     | Hall,ODS,Schlum      |
| 05.Jun.2022<br>22:35 | 06.Jun.2022<br>14:30 | 16.0           | 89.9          | 0.0         | 0.0         | 12.0         | 15.9        | 58.6       | 0.0  | POOH with 6" dress-off BHA                                         | ODS,Hall,Schlum      |

Rev. no.: 0



Doc. No. 2022-013511

Valid from: Dec 2022 Rev. no.: 0

| Start time           | End time             | Budget<br>time | Acc<br>budget | Target time | Acc<br>tech | Plan<br>time | Act<br>time | Acc<br>actual | Down | Description                                                       | Companies       |
|----------------------|----------------------|----------------|---------------|-------------|-------------|--------------|-------------|---------------|------|-------------------------------------------------------------------|-----------------|
| Start time           | End time             | hrs            | days          | hrs         | days        | hrs          | hrs         | days          | time | Description                                                       | Companies       |
| 06.Jun.2022<br>14:30 | 06.Jun.2022<br>21:25 | 0.0            | 89.9          | 0.0         | 0.0         | 9.0          | 6.9         | 58.9          | 0.0  | Unplanned: RIH with 3.5" cement stinger                           | Hall,ODS,Schlum |
| 06.Jun.2022<br>21:25 | 07.Jun.2022<br>05:10 | 0.0            | 89.9          | 0.0         | 0.0         | 5.0          | 7.8         | 59.2          | 0.0  | Unplanned: Circulate BU prior to cementing                        | Hall,ODS,Schlum |
| 07.Jun.2022<br>05:10 | 07.Jun.2022<br>07:00 | 0.0            | 89.9          | 0.0         | 0.0         | 1.5          | 1.8         | 59.3          | 0.0  | Unplanned: Set cement plug #2                                     | Hall,ODS,Schlum |
| 07.Jun.2022<br>07:00 | 07.Jun.2022<br>12:45 | 0.0            | 89.9          | 0.0         | 0.0         | 5.0          | 5.8         | 59.5          | 0.0  | Unplanned: Pull out of cement and cut cement inside 7" liner.     | Hall,ODS,Schlum |
| 07.Jun.2022<br>12:45 | 08.Jun.2022<br>01:00 | 0.0            | 89.9          | 0.0         | 0.0         | 12.5         | 12.3        | 60.0          | 0.0  | Unplanned: POOH with cement stinger                               | Hall,ODS,Schlum |
| 08.Jun.2022<br>01:00 | 08.Jun.2022<br>07:10 | 0.0            | 89.9          | 0.0         | 0.0         | 7.5          | 6.2         | 60.3          | 0.0  | Unplanned: RIH with 6" dress-off BHA                              | Hall,ODS,Schlum |
| 08.Jun.2022<br>07:10 | 08.Jun.2022<br>14:50 | 0.0            | 89.9          | 0.0         | 0.0         | 7.0          | 7.7         | 60.6          | 0.0  | Unplanned: Dress off and tag cement plug #2. Circulate BU         | Hall,ODS,Schlum |
| 08.Jun.2022<br>14:50 | 08.Jun.2022<br>23:15 | 0.0            | 89.9          | 0.0         | 0.0         | 10.0         | 8.4         | 61.0          | 0.0  | Unplanned: POOH with 6" dress-off BHA                             | Hall,ODS,Schlum |
| 08.Jun.2022<br>23:15 | 09.Jun.2022<br>07:35 | 8.0            | 90.2          | 0.0         | 0.0         | 6.0          | 8.3         | 61.3          | 0.0  | RIH with 3.5" cement stinger                                      | ODS,Hall,Schlum |
| 09.Jun.2022<br>07:35 | 09.Jun.2022<br>12:40 | 8.0            | 90.6          | 0.0         | 0.0         | 4.0          | 5.1         | 61.5          | 0.0  | Circulate BU prior to cementing                                   | Hall,ODS,Schlum |
| 09.Jun.2022<br>12:40 | 09.Jun.2022<br>14:25 | 4.0            | 90.7          | 0.0         | 0.0         | 2.5          | 1.8         | 61.6          | 0.0  | Set combined cement plug #3, #4 and #5 from OH into 9 7/8" casing | ODS,Hall,Schlum |
| 09.Jun.2022<br>14:25 | 09.Jun.2022<br>19:15 | 6.0            | 91.0          | 0.0         | 0.0         | 5.0          | 4.8         | 61.8          | 0.0  | Pull out of cement and Circulate clean                            | ODS,Schlum      |
| 09.Jun.2022<br>19:15 | 10.Jun.2022<br>01:45 | 15.0           | 91.6          | 0.0         | 0.0         | 6.0          | 6.5         | 62.1          | 0.0  | POOH with cement stinger                                          | ODS,Hall,Schlum |



Doc. No. 2022-013511

Rev. no.: 0 Valid from: Dec 2022

| Start time           | End time             | Budget<br>time<br>hrs | Acc<br>budget<br>days | Target time hrs | Acc<br>tech<br>days | Plan<br>time<br>hrs | Act<br>time<br>hrs | Acc<br>actual<br>days | Down<br>time | Description                                         | Companies          |
|----------------------|----------------------|-----------------------|-----------------------|-----------------|---------------------|---------------------|--------------------|-----------------------|--------------|-----------------------------------------------------|--------------------|
| 10.Jun.2022<br>01:45 | 10.Jun.2022<br>08:20 | 2.0                   | 91.7                  | 0.0             | 0.0                 | 1.5                 | 6.6                | 62.3                  | 0.0          | Change to 5 7/8" Saver sub                          | ODS,Schlum         |
| 10.Jun.2022<br>08:20 | 10.Jun.2022<br>13:10 | 8.0                   | 92.0                  | 0.0             | 0.0                 | 6.0                 | 4.8                | 62.5                  | 0.0          | RIH with 8 1/2" dressing BHA.                       | ODS,Hall,Schlum    |
| 10.Jun.2022<br>13:10 | 10.Jun.2022<br>16:10 | 2.0                   | 92.1                  | 0.0             | 0.0                 | 1.5                 | 3.0                | 62.7                  | 0.0          | Dress and tag cement barriers towards Rødby fm.     | ODS,Hall,Schlum    |
| 10.Jun.2022<br>16:10 | 10.Jun.2022<br>17:30 | 6.0                   | 92.3                  | 0.0             | 0.0                 | 5.0                 | 1.3                | 62.7                  | 0.0          | Adjust mud weight to 1.96 sg                        | ODS,Hall,Schlum    |
| 10.Jun.2022<br>17:30 | 10.Jun.2022<br>22:00 | 8.0                   | 92.7                  | 0.0             | 0.0                 | 6.0                 | 4.5                | 62.9                  | 0.0          | POOH with dress-off BHA                             | ODS,Hall,Schlum    |
| 10.Jun.2022<br>22:00 | 12.Jun.2022<br>07:20 | 0.0                   | 92.7                  | 0.0             | 0.0                 | 36.0                | 33.3               | 64.3                  | 32.3         | Repair leakage on coflex choke hose                 | ODS,Hall           |
| 12.Jun.2022<br>07:20 | 12.Jun.2022<br>14:30 | 9.0                   | 93.1                  | 0.0             | 0.0                 | 6.0                 | 7.2                | 64.6                  | 0.0          | Run BOP test plug and test BOP.                     | ODS,Schlum         |
| 12.Jun.2022<br>14:30 | 12.Jun.2022<br>16:00 | 5.0                   | 93.3                  | 0.0             | 0.0                 | 2.0                 | 1.5                | 64.7                  | 0.0          | Pull BOP test plug and 9 7/8" WB (on BOP test plug) | ODS,Hall,Schlum    |
| 12.Jun.2022<br>16:00 | 12.Jun.2022<br>18:00 | 0.0                   | 93.3                  | 0.0             | 0.0                 | 2.0                 | 2.0                | 64.7                  | 0.0          | Test kelly hose and TD valves                       | ODS,Schlum         |
| 12.Jun.2022<br>18:00 | 12.Jun.2022<br>21:20 | 6.0                   | 93.5                  | 0.0             | 0.0                 | 5.0                 | 3.3                | 64.9                  | 0.0          | M/U and RIH with Cutting BHA to 2665 m              | BH,ODS,Hall,Schlum |
| 12.Jun.2022<br>21:20 | 13.Jun.2022<br>02:55 | 2.0                   | 93.6                  | 0.0             | 0.0                 | 2.0                 | 5.6                | 65.1                  | 0.0          | Cut 9 7/8" casing                                   | BH,ODS             |
| 13.Jun.2022<br>02:55 | 13.Jun.2022<br>07:30 | 6.0                   | 93.8                  | 0.0             | 0.0                 | 2.0                 | 4.6                | 65.3                  | 0.0          | POOH and L/D cutting BHA                            | BH,ODS             |
| 13.Jun.2022<br>07:30 | 13.Jun.2022<br>08:15 | 4.0                   | 94.0                  | 0.0             | 0.0                 | 2.0                 | 0.8                | 65.3                  | 0.0          | M/U and RIH with seal assembly retrival tool        | BH,ODS             |

Classification: Restricted Status: Final



Doc. No. 2022-013511

Rev. no.: 0 Valid from: Dec 2022

| Start time           | End time             | Budget<br>time | Acc<br>budget | Target time | Acc<br>tech | Plan<br>time | Act<br>time | Acc actual | Down | Description                                                  | Companies       |
|----------------------|----------------------|----------------|---------------|-------------|-------------|--------------|-------------|------------|------|--------------------------------------------------------------|-----------------|
|                      |                      | hrs            | days          | hrs         | days        | hrs          | hrs         | days       | time |                                                              |                 |
| 13.Jun.2022<br>08:15 | 13.Jun.2022<br>09:00 | 2.0            | 94.1          | 0.0         | 0.0         | 1.0          | 0.8         | 65.4       | 0.0  | Jet and pull seal assembly                                   | BH,ODS          |
| 13.Jun.2022<br>09:00 | 13.Jun.2022<br>11:10 | 3.0            | 94.2          | 0.0         | 0.0         | 1.5          | 2.2         | 65.5       | 0.0  | Circulate BU (14" x 9 7/8" csg annulus volume)               | BH,ODS          |
| 13.Jun.2022<br>11:10 | 13.Jun.2022<br>13:00 | 4.0            | 94.4          | 0.0         | 0.0         | 2.0          | 1.8         | 65.5       | 0.0  | POOH with seal assembly running tool                         | BH,ODS          |
| 13.Jun.2022<br>13:00 | 13.Jun.2022<br>13:40 | 4.0            | 94.6          | 0.0         | 0.0         | 2.0          | 0.7         | 65.6       | 0.0  | M/U and RIH with casing spear                                | BH,ODS          |
| 13.Jun.2022<br>13:40 | 13.Jun.2022<br>13:55 | 1.0            | 94.6          | 0.0         | 0.0         | 1.0          | 0.3         | 65.6       | 0.0  | Engage spear and pull 9 7/8" casing free                     | BH,ODS          |
| 13.Jun.2022<br>13:55 | 13.Jun.2022<br>15:20 | 2.0            | 94.7          | 0.0         | 0.0         | 1.0          | 1.4         | 65.6       | 0.0  | POOH with 9 7/8" casing and casing spear                     | BH,ODS          |
| 13.Jun.2022<br>15:20 | 13.Jun.2022<br>16:40 | 3.0            | 94.8          | 0.0         | 0.0         | 1.5          | 1.3         | 65.7       | 0.0  | R/U casing handling equipment                                | OWS,ODS         |
| 13.Jun.2022<br>15:20 | 13.Jun.2022<br>15:20 | 1.0            | 94.8          | 0.0         | 0.0         | 1.0          | 0.0         | 65.7       | 0.0  | L/D Casing spear                                             | BH,ODS          |
| 13.Jun.2022<br>16:40 | 13.Jun.2022<br>21:35 | 15.0           | 95.5          | 0.0         | 0.0         | 8.0          | 4.9         | 65.9       | 0.0  | Pull and R/B 9 7/8" casing from 2665 m                       | OWS,ODS         |
| 13.Jun.2022<br>21:35 | 13.Jun.2022<br>22:25 | 3.0            | 95.6          | 0.0         | 0.0         | 1.5          | 0.8         | 65.9       | 0.0  | R/D casing handling equipment                                | OWS,ODS         |
| 13.Jun.2022<br>22:25 | 14.Jun.2022<br>02:35 | 8.0            | 95.9          | 0.0         | 0.0         | 4.0          | 4.2         | 66.1       | 0.0  | M/U and RIH with 14" EZSV                                    | Hall,ODS        |
| 14.Jun.2022<br>02:35 | 14.Jun.2022<br>04:10 | 2.0            | 96.0          | 0.0         | 0.0         | 1.0          | 1.6         | 66.2       | 0.0  | Install mechanical plug in 14" Casing and pressure test same | ODS,Hall,Schlum |
| 14.Jun.2022<br>04:10 | 14.Jun.2022<br>06:40 | 6.0            | 96.3          | 0.0         | 0.0         | 3.0          | 2.5         | 66.3       | 0.0  | Displace well from 1.96 sg BaraECD to 1.40 sg Rheguard       | Hall,ODS,Schlum |

Classification: Restricted Status: Final



Doc. No. 2022-013511

Valid from: Dec 2022 Rev. no.: 0

| Start time           | End time             | Budget<br>time<br>hrs | Acc<br>budget<br>days | Target time hrs | Acc<br>tech<br>days | Plan<br>time<br>hrs | Act<br>time<br>hrs | Acc actual days | Down<br>time | Description                                          | Companies       |
|----------------------|----------------------|-----------------------|-----------------------|-----------------|---------------------|---------------------|--------------------|-----------------|--------------|------------------------------------------------------|-----------------|
| 14.Jun.2022<br>06:40 | 14.Jun.2022<br>09:05 | 5.0                   | 96.5                  | 0.0             | 0.0                 | 2.0                 | 2.4                | 66.4            | 0.0          | Pump cement plug #6 & #7 (P&A Tryggvasson formation) | Hall,ODS,Schlum |
| 14.Jun.2022<br>09:05 | 14.Jun.2022<br>11:15 | 4.0                   | 96.6                  | 0.0             | 0.0                 | 1.0                 | 2.2                | 66.5            | 0.0          | Pull out of cement and circulate BU                  | Hall,ODS,Schlum |
| 14.Jun.2022<br>11:15 | 14.Jun.2022<br>13:55 | 5.0                   | 96.8                  | 0.0             | 0.0                 | 2.0                 | 2.7                | 66.6            | 0.0          | POOH with EZSV RT                                    | Hall,ODS,Schlum |
| 14.Jun.2022<br>13:55 | 14.Jun.2022<br>18:00 | 12.0                  | 97.3                  | 0.0             | 0.0                 | 5.0                 | 4.1                | 66.7            | 0.0          | RIH with 12 1/4" Dress-off BHA and WOC               | ODS,Schlum      |
| 14.Jun.2022<br>18:00 | 14.Jun.2022<br>18:40 | 3.0                   | 97.5                  | 0.0             | 0.0                 | 1.0                 | 0.7                | 66.8            | 0.0          | Dress and tag cement plug                            | ODS             |
| 14.Jun.2022<br>18:40 | 14.Jun.2022<br>22:30 | 7.0                   | 97.8                  | 0.0             | 0.0                 | 3.0                 | 3.8                | 66.9            | 0.0          | Pull OOH with Dress-off BHA                          | ODS             |
| 14.Jun.2022<br>22:30 | 15.Jun.2022<br>00:55 | 7.0                   | 98.1                  | 0.0             | 0.0                 | 3.5                 | 2.4                | 67.0            | 0.0          | M/U and RIH with 14" EZSV                            | Hall,ODS        |
| 15.Jun.2022<br>00:55 | 15.Jun.2022<br>01:35 | 2.0                   | 98.1                  | 0.0             | 0.0                 | 1.0                 | 0.7                | 67.1            | 0.0          | Install mechanical plug in 14" casing and load test  | ODS,Hall,Schlum |
| 15.Jun.2022<br>01:35 | 15.Jun.2022<br>04:00 | 3.0                   | 98.3                  | 0.0             | 0.0                 | 2.0                 | 2.4                | 67.2            | 0.0          | Pump cement plug #8 & #9 (P&A towards Lista fm)      | Hall,ODS        |
| 15.Jun.2022<br>04:00 | 15.Jun.2022<br>05:50 | 3.0                   | 98.4                  | 0.0             | 0.0                 | 2.5                 | 1.8                | 67.2            | 0.0          | Pull out of cement and circulate BU                  | Hall,ODS        |
| 15.Jun.2022<br>05:50 | 15.Jun.2022<br>11:15 | 20.0                  | 99.2                  | 0.0             | 0.0                 | 2.0                 | 5.4                | 67.5            | 0.0          | POOH with EZSV RT                                    | Hall,ODS        |
| 15.Jun.2022<br>11:15 | 15.Jun.2022<br>17:20 | 14.0                  | 99.8                  | 0.0             | 0.0                 | 10.0                | 6.1                | 67.7            | 0.0          | RIH with 12 1/4" Dress-off BHA and WOC               | ODS             |
| 15.Jun.2022<br>17:20 | 15.Jun.2022<br>17:40 | 3.0                   | 99.9                  | 0.0             | 0.0                 | 2.0                 | 0.3                | 67.7            | 0.0          | Dress cement plug                                    | ODS             |



Doc. No. 2022-013511

Valid from: Dec 2022 Rev. no.: 0

| Start time           | End time             | Budget<br>time | Acc<br>budget | Target time | Acc<br>tech | Plan<br>time | Act<br>time | Acc<br>actual | Down | Description                                                         | Companies  |
|----------------------|----------------------|----------------|---------------|-------------|-------------|--------------|-------------|---------------|------|---------------------------------------------------------------------|------------|
|                      |                      | hrs            | days          | hrs         | days        | hrs          | hrs         | days          | time |                                                                     |            |
| 15.Jun.2022<br>17:40 | 15.Jun.2022<br>20:40 | 6.0            | 100.2         | 0.0         | 0.0         | 2.5          | 3.0         | 67.9          | 0.0  | Pull OOH with 12 1/4" Dress-off BHA                                 | ODS        |
| 15.Jun.2022<br>20:40 | 15.Jun.2022<br>22:45 | 4.0            | 100.3         | 0.0         | 0.0         | 2.0          | 2.1         | 67.9          | 0.0  | M/U and RIH with 14in casing cutter                                 | BH,ODS     |
| 15.Jun.2022<br>22:45 | 16.Jun.2022<br>00:20 | 2.0            | 100.4         | 0.0         | 0.0         | 1.0          | 1.6         | 68.0          | 0.0  | Cut 14" casing                                                      | BH,ODS     |
| 16.Jun.2022<br>00:20 | 16.Jun.2022<br>02:35 | 4.0            | 100.6         | 0.0         | 0.0         | 2.0          | 2.3         | 68.1          | 0.0  | POOH and L/D cutting assy                                           | BH,ODS     |
| 16.Jun.2022<br>00:20 | 16.Jun.2022<br>00:20 | 2.0            | 100.7         | 0.0         | 0.0         | 1.0          | 0.0         | 68.1          | 0.0  | Circulate BU through cut                                            | BH,ODS     |
| 16.Jun.2022<br>02:35 | 16.Jun.2022<br>07:10 | 3.0            | 100.8         | 0.0         | 0.0         | 2.0          | 4.6         | 68.3          | 0.0  | MU and RIH with jet sub and seal assy running tool and casing spear | BH,ODS     |
| 16.Jun.2022<br>07:10 | 16.Jun.2022<br>07:35 | 1.0            | 100.8         | 0.0         | 0.0         | 1.0          | 0.4         | 68.3          | 0.0  | Pull seal assembly                                                  | BH,ODS     |
| 16.Jun.2022<br>07:35 | 16.Jun.2022<br>08:50 | 2.0            | 100.9         | 0.0         | 0.0         | 1.0          | 1.3         | 68.4          | 0.0  | Circulate hole clean through cut                                    | BH,ODS     |
| 16.Jun.2022<br>08:50 | 16.Jun.2022<br>10:00 | 1.0            | 101.0         | 0.0         | 0.0         | 1.0          | 1.2         | 68.4          | 0.0  | Engage spear and pull 14" casing free                               | BH,ODS     |
| 16.Jun.2022<br>10:00 | 16.Jun.2022<br>11:50 | 2.0            | 101.1         | 0.0         | 0.0         | 1.5          | 1.8         | 68.5          | 0.0  | POOH with casing spear and 14" casing                               | BH,ODS     |
| 16.Jun.2022<br>11:50 | 16.Jun.2022<br>14:00 | 1.0            | 101.1         | 0.0         | 0.0         | 0.5          | 2.2         | 68.6          | 0.0  | L/D casing spear                                                    | BH,ODS     |
| 16.Jun.2022<br>14:00 | 16.Jun.2022<br>14:30 | 3.0            | 101.2         | 0.0         | 0.0         | 1.5          | 0.5         | 68.6          | 0.0  | R/U casing handling equipment                                       | OWS,BH,ODS |
| 16.Jun.2022<br>14:30 | 16.Jun.2022<br>15:40 | 4.0            | 101.4         | 0.0         | 0.0         | 2.0          | 1.2         | 68.7          | 0.0  | L/D 14" casing                                                      | OWS,BH,ODS |



Doc. No. 2022-013511

Rev. no.: 0 Valid from: Dec 2022

| Start time           | End time             | Budget<br>time<br>hrs | Acc<br>budget<br>days | Target time hrs | Acc<br>tech<br>days | Plan<br>time<br>hrs | Act<br>time<br>hrs | Acc<br>actual<br>days | Down<br>time | Description                                                    | Companies |
|----------------------|----------------------|-----------------------|-----------------------|-----------------|---------------------|---------------------|--------------------|-----------------------|--------------|----------------------------------------------------------------|-----------|
| 16.Jun.2022<br>15:40 | 16.Jun.2022<br>16:35 | 3.0                   | 101.5                 | 0.0             | 0.0                 | 1.5                 | 0.9                | 68.7                  | 0.0          | R/D casing handling equipment                                  | OWS,ODS   |
| 16.Jun.2022<br>16:35 | 16.Jun.2022<br>20:05 | 5.0                   | 101.7                 | 0.0             | 0.0                 | 2.0                 | 3.5                | 68.8                  | 0.0          | M/U and RIH with 20in EZSV and MR/BOP clean assy               | Hall,ODS  |
| 16.Jun.2022<br>20:05 | 16.Jun.2022<br>20:30 | 2.0                   | 101.8                 | 0.0             | 0.0                 | 1.0                 | 0.4                | 68.9                  | 0.0          | Set 20in EZSV and pressure test same                           | Hall,ODS  |
| 16.Jun.2022<br>20:30 | 17.Jun.2022<br>00:05 | 4.0                   | 102.0                 | 0.0             | 0.0                 | 2.0                 | 3.6                | 69.0                  | 0.0          | Displace well to SW                                            | Hall,ODS  |
| 17.Jun.2022<br>00:05 | 17.Jun.2022<br>01:00 | 2.0                   | 102.1                 | 0.0             | 0.0                 | 2.0                 | 0.9                | 69.0                  | 0.0          | Set cement plug #10                                            | Hall,ODS  |
| 17.Jun.2022<br>01:00 | 17.Jun.2022<br>03:10 | 3.0                   | 102.2                 | 0.0             | 0.0                 | 1.0                 | 2.2                | 69.1                  | 0.0          | Pull above cement and wash BOP                                 | Hall,ODS  |
| 17.Jun.2022<br>03:10 | 17.Jun.2022<br>06:00 | 4.0                   | 102.3                 | 0.0             | 0.0                 | 2.0                 | 2.8                | 69.2                  | 0.0          | POOH with EZSV running tool and MR/BOP clean assy and L/D same | Hall,ODS  |
| 17.Jun.2022<br>06:00 | 17.Jun.2022<br>16:50 | 13.0                  | 102.9                 | 0.0             | 0.0                 | 5.5                 | 10.8               | 69.7                  | 0.0          | R/U BOP handling equipment                                     | ODS       |
| 17.Jun.2022<br>16:50 | 17.Jun.2022<br>18:20 | 4.0                   | 103.1                 | 0.0             | 0.0                 | 1.3                 | 1.5                | 69.8                  | 0.0          | L/D diverter                                                   | ODS       |
| 17.Jun.2022<br>18:20 | 17.Jun.2022<br>19:45 | 3.0                   | 103.2                 | 0.0             | 0.0                 | 1.2                 | 1.4                | 69.8                  | 0.0          | P/U landing joint and collapse slip joint                      | ODS       |
| 17.Jun.2022<br>19:45 | 17.Jun.2022<br>20:15 | 5.0                   | 103.4                 | 0.0             | 0.0                 | 0.8                 | 0.5                | 69.8                  | 0.0          | Disconnect BOP and move rig to Aux                             | ODS       |
| 17.Jun.2022<br>20:15 | 17.Jun.2022<br>22:25 | 6.0                   | 103.6                 | 0.0             | 0.0                 | 2.0                 | 2.2                | 69.9                  | 0.0          | Split STR                                                      | ODS       |
| 17.Jun.2022<br>22:25 | 18.Jun.2022<br>02:30 | 9.0                   | 104.0                 | 0.0             | 0.0                 | 3.3                 | 4.1                | 70.1                  | 0.0          | Pull and L/D Slip joint and landing joint                      | ODS       |

Classification: Restricted Status: Final



Page 139 of 196

Final well report,
Pilot well NO 34/9-U-1
and Exploration well NO 34/9-1 S Cambozola

Doc. No. 2022-013511

Valid from: Dec 2022

Rev. no.: 0

| Start time           | End time             | Budget<br>time<br>hrs | Acc<br>budget<br>days | Target time hrs | Acc<br>tech<br>days | Plan<br>time<br>hrs | Act<br>time<br>hrs | Acc<br>actual<br>days | Down<br>time | Description                                             | Companies     |
|----------------------|----------------------|-----------------------|-----------------------|-----------------|---------------------|---------------------|--------------------|-----------------------|--------------|---------------------------------------------------------|---------------|
| 18.Jun.2022<br>02:30 | 19.Jun.2022<br>04:00 | 14.0                  | 104.6                 | 0.0             | 0.0                 | 16.0                | 25.5               | 71.2                  | 0.0          | Pull BOP and land on carrier                            | ODS           |
| 19.Jun.2022<br>04:00 | 19.Jun.2022<br>08:30 | 5.0                   | 0.2                   | 0.0             | 0.0                 | 2.0                 | 4.5                | 0.2                   | 0.0          | Move from Location [NO 34/9-1 S]                        |               |
| 19.Jun.2022<br>04:00 | 19.Jun.2022<br>04:00 | 4.0                   | 104.8                 | 0.0             | 0.0                 | 0.0                 | 0.0                | 71.3                  | 0.0          | Offline in AUX: M/U and RIH with WH cutting assembly    | BH,ODS,Schlum |
| 19.Jun.2022<br>04:00 | 19.Jun.2022<br>04:00 | 4.0                   | 104.9                 | 0.0             | 0.0                 | 0.0                 | 0.0                | 71.3                  | 0.0          | Offline in AUX: Latch onto and cut wellhead             | BH,ODS,Schlum |
| 19.Jun.2022<br>04:00 | 19.Jun.2022<br>04:00 | 4.0                   | 105.1                 | 0.0             | 0.0                 | 0.0                 | 0.0                | 71.3                  | 0.0          | Offline in AUX: POOH with Wellhead and Cutting assembly | BH,ODS,Schlum |
| 19.Jun.2022<br>04:00 | 19.Jun.2022<br>07:30 | 0.0                   | 105.1                 | 0.0             | 0.0                 | 1.0                 | 3.5                | 71.3                  | 0.0          | Perform anchor handling (4 anchors left)                | ODS           |
| 19.Jun.2022<br>04:00 | 19.Jun.2022<br>04:00 | 0.0                   | 105.1                 | 0.0             | 0.0                 | 0.0                 | 0.0                | 71.2                  | 0.0          | wow                                                     | ODS           |
| 19.Jun.2022<br>04:00 | 19.Jun.2022<br>04:00 | 4.0                   | 105.3                 | 0.0             | 0.0                 | 1.0                 | 0.0                | 71.3                  | 0.0          | R/D riser handling equipment                            | ODS           |
| 19.Jun.2022<br>07:30 | 19.Jun.2022<br>08:30 | 5.0                   | 105.5                 | 0.0             | 0.0                 | 1.0                 | 1.0                | 71.4                  | 0.0          | Move out of 500m zone                                   | ODS           |



Page 140 of 196

Final well report,

Doc. No. 2022-013511

Pilot well NO 34/9-U-1

and Exploration well NO 34/9-1 S Cambozola

DOC: 140: 2022 010011

Valid from: Dec 2022 Rev. no.: 0

# App K Bit record (table)

**WELL:** NO 34/9-1 S

| Run no | Bit size | Bit no | BHA no | Bit type    | IADC code | Bit manufacturer    |
|--------|----------|--------|--------|-------------|-----------|---------------------|
| 2      | 26"      | 1      | 2      | XR+VE       | 115       | Smith International |
| 4      | 26"      | 2      | 4      | XR+VEC      | 115       | Smith International |
| 7      | 17 1/2"  | 3      | 7      | MDI619      | M223      | Smith International |
| 8      | 17 1/2"  | 3rr1   | 8      | MDI619      | M223      | Smith International |
| 14     | 12 1/4"  |        | 14     | XR+C        | 117       | Smith International |
| 16     |          | 6      | 16     | SMITH BITS  |           | Smith Bits          |
| 19     | 10 5/8"  | 7      | 19     | MDSI616LBPX | 423       | Smith International |
| 23     | 10 5/8"  | 7      | 23     | MDSI616LBPX | 423       | Smith International |
| 31     | 8 1/2"   | 7      | 31     | SVH         | 215       | Smith International |
| 33     | 8 1/2"   | 7RR1   | 33     | BIT         |           | UNKNOWN             |
| 37     | 6"       | 8      | 37     | SMITH BITS  |           | Smith Bits          |
| 40     | 6"       | 8RR    | 40     | SMITH BITS  |           | Smith Bits          |
| 42     | 6"       | 8RR2   | 42     | SMITH BITS  |           | Smith Bits          |
| 44     |          |        | 44     | SMITH BITS  |           | Smith Bits          |
| 49     |          |        | 49     | GF15DODV    |           | Smith International |
| 51     |          |        | 51     | GF15DODV    |           | Smith International |



Page 141 of 196

Final well report,

Doc. No. 2022-013511

Valid from: Dec 2022

Pilot well NO 34/9-U-1

and Exploration well NO 34/9-1 S Cambozola

|        |          |        |        |           |        |        | Nozzles | s (n/32") |               |
|--------|----------|--------|--------|-----------|--------|--------|---------|-----------|---------------|
| Run no | Bit size | Bit no | BHA no | Serial no | no x n | no x n | no x n  | no x n    | Flow area in2 |
| 2      | 26"      | 1      | 2      | RG4406    | 2 x 22 | 2 x 20 | х       | х         | 1.356         |
| 4      | 26"      | 2      | 4      | RK9587    | 1 x 22 | 2 x 20 | 1 x 19  | x         | 1.325         |
| 7      | 17 1/2"  | 3      | 7      | JV6314    | 2 x 16 | 7 x 14 | x       | x         | 1.325         |
| 8      | 17 1/2"  | 3rr1   | 8      | JV6314    | 2 x 16 | 7 x 14 | x       | x         | 1.325         |
| 14     | 12 1/4"  |        | 14     | RH9874    | 3 x 25 | 1 x 16 | x       | X         | 1.634         |
| 16     |          | 6      | 16     | JP6857    | 3 x 16 | 3 x 18 | x       | x         | 1.335         |
| 19     | 10 5/8"  | 7      | 19     | QF1460    | 3 x 16 | 3 x 15 | x       | x         | 1.335         |
| 23     | 10 5/8"  | 7      | 23     | QF1460    | 3 x 16 | 3 x 15 | x       | х         | 1.335         |
| 31     | 8 1/2"   | 7      | 31     | JV2158    | 5 x 11 | x      | x       | x         | 0.464         |
| 33     | 8 1/2"   | 7RR1   | 33     | JV2158    | 5 x 11 | x      | x       | x         | 0.464         |
| 37     | 6"       | 8      | 37     | JV9056    | 3 x 10 | х      | x       | х         |               |
| 40     | 6"       | 8RR    | 40     | JV9056    | 3 x 10 | x      | x       | x         | 0.23          |
| 42     | 6"       | 8RR2   | 42     | JV9056    | 3 x 10 | х      | x       | х         | 0.23          |
| 44     |          |        | 44     |           | 3 x 10 | 3 x 11 | х       | х         | 0.509         |
| 49     |          |        | 49     |           | 3 x 22 | 1 x 16 | х       | х         | 1.31          |
| 51     |          |        | 51     |           | 3 x 22 | 1 x 16 | х       | х         | 1.31          |

Rev. no.: 0



Page 142 of 196

Final well report,

Doc. No. 2022-013511

Pilot well NO 34/9-U-1

and Exploration well NO 34/9-1 S Cambozola

DUC. NO. 2022-013311

| Run no | Bit size | Pump rate<br>I/min | Pump press<br>bar | Depth in mMD | Depth out<br>mMD | Form drld m | Total drld m | Drld hrs | Circ hrs | ROP m/hr |
|--------|----------|--------------------|-------------------|--------------|------------------|-------------|--------------|----------|----------|----------|
| 2      | 26"      | 5000.0             | 125.0             | 412.00       | 468.00           | 56.00       | 56.00        | 8.3      | 21.7     | 6.7      |
| 4      | 26"      | 4317.5             | 317.5             | 467.70       | 1300.00          | 832.30      | 834.50       | 16.9     | 26.5     | 49.2     |
| 7      | 17 1/2"  | 3500.0             | 90.0              | 1300.00      | 1303.00          | 3.00        | 132.00       | 0.1      | 12.0     | 30.0     |
| 8      | 17 1/2"  | 4700.0             | 336.0             | 1303.00      | 3460.00          | 2157.00     | 2157.00      | 41.1     | 48.0     | 52.5     |
| 14     | 12 1/4"  |                    |                   |              |                  |             |              |          |          | i        |
| 16     |          | 4100.0             | 400.5             | 3460.00      | 3989.00          | 529.00      | 591.00       | 21.8     | 40.0     | 24.3     |
| 19     | 10 5/8"  | 3000.0             | 284.0             | 3989.00      | 3993.00          | 4.00        | 47.00        | 0.9      | 16.0     | 4.4      |
| 23     | 10 5/8"  | 3335.0             | 348.0             | 3989.00      | 4277.00          | 288.00      | 332.00       | 25.3     | 37.9     | 11.4     |
| 31     | 8 1/2"   | 1243.3             | 213.3             | 4322.00      | 4318.00          | - 4.00      | 0.00         | 0.0      | 45.5     |          |
| 33     | 8 1/2"   | 1200.0             | 164.0             | 4322.00      | 4367.00          | 45.00       | 45.00        | 15.2     | 47.3     | 3.0      |
| 37     | 6"       | 580.0              | 138.8             | 4367.00      | 4455.00          | 88.00       | 158.00       | 40.4     | 150.6    | 2.2      |
| 40     | 6"       | 500.0              | 105.0             | 4455.00      | 4455.00          | 0.00        | 0.00         | 0.0      | 8.3      |          |
| 42     | 6"       |                    |                   | 4455.00      | 4455.00          | 0.00        | 56.00        | 0.0      | 7.8      |          |
| 44     |          |                    |                   |              |                  |             |              |          |          |          |
| 49     |          |                    |                   | 2447.00      | 2487.00          | 40.00       |              |          |          |          |
| 51     |          |                    |                   | 2447.00      | 2487.00          | 40.00       |              |          |          |          |



Page 143 of 196

Final well report,

Doc. No. 2022-013511

Pilot well NO 34/9-U-1

and Exploration well NO 34/9-1 S Cambozola

| Run no | Bit size | Min WOB<br>tonne | Max<br>WOB<br>tonne | Min RPM | Max RPM | Torque Min<br>Nm | Torque Max Nm | Con drag Min<br>1000 1000 daN | Con drag Max<br>1000 1000 daN |
|--------|----------|------------------|---------------------|---------|---------|------------------|---------------|-------------------------------|-------------------------------|
| 2      | 26"      | 2.50             | 4.50                | 50.00   | 90.00   | 3.00             | 12.00         |                               |                               |
| 4      | 26"      | 9.50             | 25.50               | 40.00   | 75.00   | 7.00             | 19.50         |                               |                               |
| 7      | 17 1/2"  | 5.00             | 10.00               | 40.00   | 80.00   | 2.00             | 11.00         |                               |                               |
| 8      | 17 1/2"  | 6.67             | 15.33               | 160.00  | 200.00  | 17.00            | 29.33         |                               |                               |
| 14     | 12 1/4"  |                  |                     |         |         |                  |               |                               |                               |
| 16     |          | 5.00             | 16.50               | 70.00   | 200.00  | 15.50            | 36.00         |                               |                               |
| 19     | 10 5/8"  | 2.00             | 5.50                | 65.00   | 80.00   | 9.00             | 12.50         |                               |                               |
| 23     | 10 5/8"  | 13.00            | 14.33               | 146.67  | 146.67  | 24.00            | 24.67         |                               |                               |
| 31     | 8 1/2"   | 3.00             | 7.00                | 46.67   | 86.67   | 5.33             | 12.33         |                               |                               |
| 33     | 8 1/2"   | 7.50             | 10.00               | 135.00  | 150.00  | 7.50             | 9.50          |                               |                               |
| 37     | 6"       | 3.80             | 5.00                | 100.00  | 116.00  | 5.00             | 8.40          |                               |                               |
| 40     | 6"       | 0.00             | 1.00                | 10.00   | 40.00   | 4.00             | 6.00          |                               |                               |
| 42     | 6"       |                  |                     |         |         |                  |               |                               |                               |
| 44     |          |                  |                     |         |         |                  |               |                               |                               |
| 49     |          |                  |                     |         |         |                  |               |                               |                               |
| 51     |          |                  |                     |         |         |                  |               |                               |                               |



Page 144 of 196

Final well report,

Doc. No. 2022-013511

Pilot well NO 34/9-U-1

and Exploration well NO 34/9-1 S Cambozola

| Run no | Bit size | 1 | 0 | DC | L | В | G  | ОС | RP  |
|--------|----------|---|---|----|---|---|----|----|-----|
| 2      | 26"      | 2 | 1 | WT | М | Е | IN | NO | TD  |
| 4      | 26"      |   |   |    |   |   |    |    |     |
| 7      | 17 1/2"  | 2 | 1 | СТ | N | X | 0  | NO | DTF |
| 8      | 17 1/2"  | 3 | 1 | СТ | С | X | In | ВТ | TD  |
| 14     | 12 1/4"  |   |   |    |   |   |    |    |     |
| 16     |          | 0 | 1 | WT | G | X | IN | СТ | TD  |
| 19     | 10 5/8"  | 1 | 1 | WT | G | X | IN | ВТ | HP  |
| 23     | 10 5/8"  | 0 | 1 | WT | G | X | IN | ВТ | TD  |
| 31     | 8 1/2"   | 0 | 1 | ВТ | С | X | 0  | PN | HP  |
| 33     | 8 1/2"   | 2 | 1 | ВТ | С | X | 0  | NO | TD  |
| 37     | 6"       | 0 | 1 | WT | S | X | IN | JD | TD  |
| 40     | 6"       | 0 | 1 | WT | S | X | IN | NO | TD  |
| 42     | 6"       | 0 | 1 | WT | S | X | IN | NO | TD  |
| 44     |          |   |   |    |   |   |    |    |     |
| 49     |          |   |   |    |   |   |    |    |     |
| 51     |          |   |   |    |   |   |    |    |     |



Page 145 of 196

Final well report,

Doc. No. 2022-013511

Pilot well NO 34/9-U-1

and Exploration well NO 34/9-1 S Cambozola

Valid from: Dec 2022 Rev. no.: 0

| Run no | Bit size | Remarks                                                                                         |
|--------|----------|-------------------------------------------------------------------------------------------------|
| 2      | 26"      | Drill 26" x 42" section to TD @ 473 mMD                                                         |
| 4      | 26"      | Drill 26" hole to TD at +/- 1300 m                                                              |
| 7      | 17 1/2"  | Drill 17 1/2" hole to section TD.                                                               |
| 8      | 17 1/2"  | Unplanned: Drill 17 1/2" section to TD with backup BHA                                          |
| 14     | 12 1/4"  | Clean-out run to tag TOC inside 14" casing                                                      |
| 16     |          | Drill 12 1/4" x 13 1/2" section                                                                 |
| 19     | 10 5/8"  | Drill 10 5/8x12 1/2" section                                                                    |
| 23     | 10 5/8"  | Drill 10 5/8" x 12 1/4" section to TD Run#2                                                     |
| 31     | 8 1/2"   | Drill 8 1/2" section                                                                            |
| 33     | 8 1/2"   | Drill 8 1/2" section to TD                                                                      |
| 37     | 6"       | Drill 6" hole to corepoint or TD                                                                |
| 40     | 6"       | Dress-off and verify primary barrier with 6" BHA                                                |
| 42     | 6"       | Unplanned: Dress off and verify primary barrier against reservoir                               |
| 44     |          | Dress-off and tag 2nd cement plug inside 9 7/8" casing                                          |
| 49     |          | Dress-off and verify cement plug inside 14" casing (Primary and secondary Tryggvason Fm.)       |
| 51     |          | Dress-off and tag 2nd cement plug inside 14" casing. Primary and secondary barrier to Lista fm. |



Page 146 of 196

Final well report,

Doc. No. 2022-013511

Pilot well NO 34/9-U-1

and Exploration well NO 34/9-1 S Cambozola Valid from: Dec 2022 Rev. no.: 0

# App L BHA Assemblies

WELLBORE: NO 34/9-1 S

**BHA NO:** 2

**RUN TYPE:** Drilling run

DESCRIPTION: Drill 26" x 42" section to TD @ 473 mMD

| String component | OD in  | ID in | Length m | Acc length m | Comment              |
|------------------|--------|-------|----------|--------------|----------------------|
| BIT              | 26.000 |       | 0.66     | 0.66         | Hole opener grading: |
| HOLE OPENER      | 42.000 | 4.000 | 2.48     | 3.14         |                      |
| BIT SUB          | 9.500  | 2.813 | 0.90     | 4.04         | NP float             |
| PONY COLLAR, NM  | 9.625  | 3.000 | 4.08     | 8.12         |                      |
| X/0              | 9.125  | 3.500 | 0.41     | 8.53         |                      |
| TELESCOPE        | 9.125  | 5.900 | 9.07     | 17.60        |                      |
| DRILL COLLAR     | 9.500  | 3.000 | 73.58    | 91.18        |                      |
| X-OVER           | 9.500  | 3.250 | 0.93     | 92.11        |                      |
| DRILL COLLAR     | 8.250  | 3.000 | 71.79    | 163.90       |                      |
| X-OVER           | 8.000  | 3.000 | 0.94     | 164.84       |                      |
| HW DRILL PIPE    | 7.000  | 4.000 | 73.65    | 238.49       |                      |



Doc. No. 2022-013511

Pilot well NO 34/9-U-1

and Exploration well NO 34/9-1 S Cambozola

Valid from: Dec 2022 Rev. no.: 0

**BHA NO:** 4

**RUN TYPE:** Drilling run

**DESCRIPTION:** Drill 26" hole to TD at +/- 1300 m

**RUN NAME:** 2

| String component | OD in  | ID in | Length m | Acc length m | Comment                          |
|------------------|--------|-------|----------|--------------|----------------------------------|
| BIT              | 26.000 | 3.750 | 0.65     | 0.65         | 2.3m cement / 0.66 cement hours. |
| MOTOR STEERABLE  | 25.750 | 9.500 | 9.58     | 10.23        | 1.15 deg bend, A1125M3436SP      |
| FLOAT SUB        | 9.500  | 3.187 | 0.66     | 10.89        | NP Float                         |
| PONY COLLAR, NM  | 9.625  | 3.000 | 3.99     | 14.88        |                                  |
| STABILIZER, NM   | 25.750 | 3.000 | 2.44     | 17.32        |                                  |
| PONY COLLAR, NM  | 9.375  | 3.062 | 2.73     | 20.05        |                                  |
| XO               | 9.125  | 3.000 | 0.77     | 20.82        |                                  |
| ARC              | 10.000 | 3.000 | 5.81     | 26.63        | arcVision LWD                    |
| MWD              | 9.250  | 5.900 | 8.51     | 35.14        | TeleScope 900 Rhossili           |
| XO               | 9.125  | 4.250 | 0.60     | 35.74        |                                  |
| PONY COLLAR, NM  | 9.375  | 3.000 | 2.78     | 38.52        |                                  |
| STABILIZER, NM   | 25.750 | 3.000 | 2.41     | 40.93        |                                  |
| PONY COLLAR, NM  | 8.875  | 3.000 | 4.24     | 45.17        |                                  |
| DRILL COLLAR, NM | 9.312  | 3.000 | 7.96     | 53.13        |                                  |
| DRILL COLLAR     | 9.500  | 3.000 | 36.86    | 89.99        | 4 x 9 1/2" DC                    |
| XO               | 9.500  | 3.000 | 0.75     | 90.74        | Bottleneck XO                    |
| DRILL COLLAR     | 8.250  | 3.000 | 54.47    | 145.21       | 6 x 8 1/4" DC                    |
| JAR              | 8.000  | 3.000 | 13.26    | 158.47       | Jar & Running Pup                |
| DRILL COLLAR     | 8.250  | 3.000 | 44.49    | 202.96       | 5 x 8 1/4" DC                    |
| XO               | 8.000  | 3.000 | 0.77     | 203.73       |                                  |
| HWDP             | 7.000  | 4.000 | 73.64    | 277.37       | 8 x 5 7/8" HWDP                  |

Page 147 of 196



Doc. No. 2022-013511

Pilot well NO 34/9-U-1

and Exploration well NO 34/9-1 S Cambozola

Valid from: Dec 2022 Rev. no.: 0

| String component | OD in | ID in | Length m | Acc length m | Comment       |
|------------------|-------|-------|----------|--------------|---------------|
| DRILL PIPE       | 7.000 | 5.045 | 9.72     | 287.09       | DP to surface |

**BHA NO:** 7

**RUN TYPE:** Drilling run

**DESCRIPTION:** Drill 17 1/2" hole to section TD.

**RUN NAME:** 3

| String component | OD in  | ID in | Length m | Acc length m | Comment                                                               |
|------------------|--------|-------|----------|--------------|-----------------------------------------------------------------------|
| ВІТ              | 17.500 | 3.750 | 0.45     | 0.45         | YS619S Hyperblade, 13 chipped cutters on nose and outer part of cone. |
| POWERDRIVE ORBIT | 17.250 | 9.250 | 6.13     | 6.58         |                                                                       |
| ARC              | 10.000 | 3.000 | 5.86     | 12.44        | arcVision LWD                                                         |
| MWD              | 9.125  | 5.900 | 8.42     | 20.86        | MWD                                                                   |
| XO               | 9.500  | 4.000 | 0.65     | 21.51        |                                                                       |
| FLOAT SUB        | 9.313  | 3.250 | 0.90     | 22.41        | AutoFill float valve                                                  |
| DRILL COLLAR, NM | 9.625  | 3.000 | 17.12    | 39.53        | 2 x 9 1/2" NMDC                                                       |
| XO               | 9.563  | 3.000 | 0.94     | 40.47        | Bottleneck XO                                                         |
| COLLAR           | 8.250  | 3.000 | 94.50    | 134.97       | 10 x 8 1/2" DC                                                        |
| JAR              | 8.000  | 3.000 | 12.26    | 147.23       | Jar & Running Pup                                                     |
| COLLAR           | 8.250  | 3.000 | 44.49    | 191.72       | 5 x 8 1/2" DC                                                         |
| XO               | 8.000  | 3.000 | 0.77     | 192.49       |                                                                       |
| HWDP             | 7.000  | 4.000 | 73.64    | 266.13       | 8 x 5 7/8" HWDP                                                       |
| DRILL PIPE       | 7.000  | 5.045 | 9.72     | 275.85       | DP to surface                                                         |

Page 148 of 196



Page 149 of 196

Final well report,

Doc. No. 2022-013511

Pilot well NO 34/9-U-1

and Exploration well NO 34/9-1 S Cambozola

Valid from: Dec 2022 Rev. no.: 0

**BHA NO**: 8

**RUN TYPE:** Drilling run

**DESCRIPTION:** Unplanned: Drill 17 1/2" section to TD with backup BHA

| String component | OD in  | ID in | Length m | Acc length m | Comment                                            |
|------------------|--------|-------|----------|--------------|----------------------------------------------------|
|                  |        |       |          |              | YS619S Hyperblade. Chipped teeth. mainly in cone   |
| BIT              | 17.500 | 3.750 | 0.45     | 0.45         | and nose. 1 tooth on shoulder with BF. A couple of |
|                  |        |       |          |              | small spots with "crazings" on hard-facing.        |
| POWERDRIVE ORBIT | 17.250 | 9.250 | 6.13     | 6.58         |                                                    |
| ARC              | 10.000 | 3.000 | 5.86     | 12.44        | arcVision LWD                                      |
| MWD              | 9.125  | 5.900 | 8.51     | 20.95        | MWD                                                |
| XO               | 9.500  | 4.000 | 0.60     | 21.55        |                                                    |
| FLOAT SUB        | 9.313  | 3.250 | 0.90     | 22.45        | AutoFill float valve                               |
| DRILL COLLAR, NM | 9.625  | 3.000 | 17.12    | 39.57        | 2 x 9 1/2" NMDC                                    |
| XO               | 9.563  | 3.000 | 0.94     | 40.51        | Bottleneck XO                                      |
| COLLAR           | 8.250  | 3.000 | 94.50    | 135.01       | 10 x 8 1/2" DC                                     |
| JAR              | 8.000  | 3.000 | 12.26    | 147.27       | Jar & Running Pup                                  |
| COLLAR           | 8.250  | 3.000 | 44.49    | 191.76       | 5 x 8 1/2" DC                                      |
| XO               | 8.000  | 3.000 | 0.77     | 192.53       |                                                    |
| HWDP             | 7.000  | 4.000 | 73.64    | 266.17       | 8 x 5 7/8" HWDP                                    |
| DRILL PIPE       | 7.000  | 5.045 | 9.72     | 275.89       | DP to surface                                      |



Page 150 of 196

Final well report,

Doc. No. 2022-013511

Pilot well NO 34/9-U-1

and Exploration well NO 34/9-1 S Cambozola Valid from

Valid from: Dec 2022 Rev. no.: 0

**BHA NO:** 14

RUN TYPE: BOP Test run

**DESCRIPTION:** Clean-out run to tag TOC inside 14" casing

| String component | OD in  | ID in | Length m | Acc length m | Comment               |
|------------------|--------|-------|----------|--------------|-----------------------|
| BIT              | 12.250 | 3.250 | 0.30     | 0.30         | 12 1/4" MT XR+ CR 117 |
| BIT SUB W/FLOAT  | 8.250  | 2.750 | 0.60     | 0.90         | NP float              |
| SPIRAL DC        | 8.250  | 3.000 | 75.60    | 76.50        |                       |
| X-OVER           | 8.000  | 3.000 | 1.23     | 77.73        | 6 5/8" Reg x XT57     |
| HWDP             | 7.000  | 4.000 | 113.40   | 191.13       | Range 2               |
| DRILL PIPE       | 7.000  | 5.045 | 9.72     | 200.85       |                       |



Page 151 of 196

Final well report,

Doc. No. 2022-013511

Pilot well NO 34/9-U-1

and Exploration well NO 34/9-1 S Cambozola

Valid from: Dec 2022 Rev. no.: 0

**BHA NO**: 16

**RUN TYPE:** Drilling run

**DESCRIPTION:** Drill 12 1/4" x 13 1/2" section

| String component   | OD in  | ID in | Length m | Acc length m | Comment           |
|--------------------|--------|-------|----------|--------------|-------------------|
| BIT                |        |       | 0.33     | 0.33         | Sharc             |
| POWERDRIVE ORBIT   | 11.800 | 5.125 | 4.26     | 4.59         |                   |
| X-OVER             | 8.250  | 2.750 | 0.00     | 4.59         |                   |
| C-LINK TRANSMITTER | 10.000 | 5.900 | 2.30     | 6.89         |                   |
| X-OVER             | 9.500  | 3.250 | 0.76     | 7.65         |                   |
| REAMER             | 13.500 | 3.400 | 6.27     | 13.92        | XC Rhino Reamer   |
| X-OVER             | 9.500  | 3.250 | 0.51     | 14.43        |                   |
| C-LINK RECEIVER    | 9.125  | 5.900 | 2.28     | 16.71        |                   |
| ARC                | 10.000 | 3.000 | 5.86     | 22.57        | arcVISION         |
| MWD                | 9.125  | 5.900 | 7.92     | 30.49        | Rhosilli          |
| SONICVISION        | 12.000 | 4.000 | 9.90     | 40.39        | SonicScope        |
| X-OVER             | 9.500  | 3.250 | 0.38     | 40.77        |                   |
| DRILL COLLAR, NM   | 9.500  | 3.000 | 9.06     | 49.83        |                   |
| REAMER             | 13.500 | 3.400 | 4.95     | 54.78        | XS2 Rhino Reamer  |
| SPIRAL DC          | 8.250  | 3.000 | 54.47    | 109.25       |                   |
| JAR                | 8.000  | 3.000 | 13.26    | 122.51       | JAR + running pup |
| SPIRAL DC          | 8.250  | 3.000 | 44.49    | 167.00       |                   |
| X-OVER             | 8.000  | 3.000 | 0.77     | 167.77       |                   |
| HW DRILL PIPE      | 7.000  | 4.000 | 73.79    | 241.56       |                   |



Page 152 of 196

Final well report,

Doc. No. 2022-013511

Pilot well NO 34/9-U-1

and Exploration well NO 34/9-1 S Cambozola Valid from: Dec 2022 Rev. no.: 0

**BHA NO:** 18

**RUN TYPE:** Logging CH run

**DESCRIPTION:** Perform IBC/CBL log for 11 3/4" Liner to verify P&A barriers

| String component | OD in | ID in | Length m | Acc length m | Comment |
|------------------|-------|-------|----------|--------------|---------|
| USIT-E / IBC     |       |       | 5.06     | 5.06         |         |
| CMIR-BD          |       |       | 1.16     | 6.22         |         |
| ASLT-B           |       |       | 4.47     | 10.69        |         |
| CMIR-BD          |       |       | 1.15     | 11.84        |         |
| EDTC-B           |       |       | 1.98     | 13.82        |         |
| LEH-QT           | _     |       | 1.06     | 14.88        |         |



Doc. No. 2022-013511

Pilot well NO 34/9-U-1

and Exploration well NO 34/9-1 S Cambozola

Valid from: Dec 2022 Rev. no.: 0

**BHA NO**: 19

**RUN TYPE:** Drilling run

DESCRIPTION: Drill 10 5/8x12 1/2" section

**RUN NAME:** 6

| String component   | OD in  | ID in | Length m | Acc length m | Comment           |
|--------------------|--------|-------|----------|--------------|-------------------|
| BIT                | 10.625 | 3.000 | 0.27     | 0.27         | Sharc MDSi616     |
| POWERDRIVE ORBIT   | 10.390 | 5.100 | 4.29     | 4.56         |                   |
| X-OVER             | 8.340  | 4.500 | 0.54     | 5.10         |                   |
| C-LINK TRANSMITTER | 9.125  | 2.850 | 1.81     | 6.91         |                   |
| X-OVER             | 8.250  | 3.500 | 0.72     | 7.63         |                   |
| REAMER             | 12.250 | 3.400 | 5.57     | 13.20        | XC Rhino Reamer   |
| X-OVER             | 8.340  | 2.750 | 0.55     | 13.75        |                   |
| C-LINK RECEIVER    | 9.125  | 2.750 | 2.29     | 16.04        |                   |
| ARC                | 9.063  | 2.810 | 5.80     | 21.84        | arcVISION         |
| MWD                | 8.340  | 5.109 | 8.25     | 30.09        | Rhosilli          |
| SONICVISION        | 10.500 | 5.807 | 9.88     | 39.97        | SonicScope        |
| X-OVER             | 8.250  | 3.500 | 0.50     | 40.47        |                   |
| DRILL COLLAR, NM   | 8.063  | 3.000 | 6.55     | 47.02        |                   |
| REAMER             | 10.000 | 3.400 | 4.37     | 51.39        | XS2 Rhino Reamer  |
| FLOAT SUB          | 8.100  | 2.825 | 1.09     | 52.48        |                   |
| FLOAT SUB          | 7.870  | 3.125 | 1.09     | 53.57        |                   |
| HANDLING JOINT     | 8.100  | 2.825 | 3.06     | 56.63        |                   |
| SPIRAL DC          | 8.250  | 3.000 | 54.47    | 111.10       |                   |
| JAR                | 8.000  | 3.000 | 13.26    | 124.36       | JAR + running pup |
| SPIRAL DC          | 8.250  | 3.000 | 44.49    | 168.85       |                   |
| X-OVER             | 8.000  | 3.000 | 0.77     | 169.62       |                   |

Page 153 of 196



Doc. No. 2022-013511

Pilot well NO 34/9-U-1

and Exploration well NO 34/9-1 S Cambozola

Valid from: Dec 2022 Rev. no.: 0

| String component | OD in | ID in | Length m | Acc length m | Comment |
|------------------|-------|-------|----------|--------------|---------|
| HW DRILL PIPE    | 7.000 | 4.000 | 73.79    | 243.41       |         |
| DART SUB         | 7.000 | 2.500 | 0.83     | 244.24       |         |

**BHA NO**: 21

RUN TYPE: BOP Test run

**DESCRIPTION:** Test BOP prior to drilling 10 5/8"x12 1/4" section

**RUN NAME:** 4

| String component | OD in | ID in | Length m | Acc length m | Comment |
|------------------|-------|-------|----------|--------------|---------|
| BOP TEST TOOL    |       |       |          |              |         |



Doc. No. 2022-013511

Pilot well NO 34/9-U-1

and Exploration well NO 34/9-1 S Cambozola

Valid from: Dec 2022 Rev. no.: 0

**BHA NO**: 23

**RUN TYPE:** Drilling run

**DESCRIPTION:** Drill 10 5/8" x 12 1/4" section to TD Run#2

**RUN NAME:** 8

| String component   | OD in  | ID in | Length m | Acc length m | Comment           |
|--------------------|--------|-------|----------|--------------|-------------------|
| BIT                | 10.625 | 3.000 | 0.27     | 0.27         | Sharc MDSi616     |
| POWERDRIVE ORBIT   | 10.390 | 5.100 | 4.29     | 4.56         |                   |
| X-OVER             | 8.340  | 4.500 | 0.54     | 5.10         |                   |
| C-LINK TRANSMITTER | 9.125  | 2.850 | 1.81     | 6.91         |                   |
| X-OVER             | 8.250  | 3.500 | 0.72     | 7.63         |                   |
| REAMER             | 12.250 | 3.400 | 5.57     | 13.20        | XC Rhino Reamer   |
| X-OVER             | 8.340  | 2.750 | 0.55     | 13.75        |                   |
| C-LINK RECEIVER    | 9.125  | 2.750 | 2.29     | 16.04        |                   |
| ARC                | 9.063  | 2.810 | 5.80     | 21.84        | arcVISION         |
| MWD                | 8.340  | 5.109 | 8.25     | 30.09        | Rhosilli          |
| SONICVISION        | 10.500 | 5.807 | 9.88     | 39.97        | SonicScope        |
| X-OVER             | 8.250  | 3.500 | 0.50     | 40.47        |                   |
| DRILL COLLAR, NM   | 8.063  | 3.000 | 6.55     | 47.02        |                   |
| REAMER             | 10.000 | 3.400 | 4.37     | 51.39        | XS2 Rhino Reamer  |
| FLOAT SUB          | 7.870  | 2.825 | 1.10     | 52.49        |                   |
| FLOAT SUB          | 8.000  | 3.125 | 1.28     | 53.77        |                   |
| HANDLING JOINT     | 8.100  | 2.825 | 3.06     | 56.83        |                   |
| SPIRAL DC          | 8.250  | 3.000 | 54.47    | 111.30       |                   |
| JAR                | 8.000  | 3.000 | 13.26    | 124.56       | JAR + running pup |
| SPIRAL DC          | 8.250  | 3.000 | 44.49    | 169.05       |                   |
| X-OVER             | 8.000  | 3.000 | 0.77     | 169.82       |                   |

Page 155 of 196



Doc. No. 2022-013511

Pilot well NO 34/9-U-1

and Exploration well NO 34/9-1 S Cambozola

Valid from: Dec 2022 Rev. no.: 0

| String component | OD in | ID in | Length m | Acc length m | Comment |
|------------------|-------|-------|----------|--------------|---------|
| HW DRILL PIPE    | 7.000 | 4.000 | 73.79    | 243.61       |         |
| DART SUB         | 7.000 | 2.500 | 0.83     | 244.44       |         |

**BHA NO:** 24

RUN TYPE: Wellhead run

**DESCRIPTION:** Retrieve 14" WB

**RUN NAME:** 3

| String component | OD in | ID in | Length m | Acc length m | Comment |
|------------------|-------|-------|----------|--------------|---------|
| BULLNOSE         |       |       |          |              |         |
| JET SUB          |       |       |          |              |         |
| WBRRT            |       |       |          |              |         |

**BHA NO: 27** 

RUN TYPE: BOP Test run

**DESCRIPTION:** Test BOP prior to drilling 8 1/2" section

**RUN NAME:** 5

| String component | OD in | ID in | Length m | Acc length m | Comment |
|------------------|-------|-------|----------|--------------|---------|
| BOP TEST TOOL    |       |       |          |              |         |



Doc. No. 2022-013511

Pilot well NO 34/9-U-1

and Exploration well NO 34/9-1 S Cambozola

Valid from: Dec 2022 Rev. no.: 0

**BHA NO:** 31

**RUN TYPE:** Drilling run

**DESCRIPTION:** Drill 8 1/2" section

**RUN NAME**: 9

| String component | OD in | ID in | Length m | Acc length m | Comment                                                                 |
|------------------|-------|-------|----------|--------------|-------------------------------------------------------------------------|
| BIT              | 8.500 | 2.250 | 0.22     | 0.22         | Hyperblade YZ519S 42m cement drilled in 2.9 hours. No formation drilled |
| BIT SUB W/FLOAT  | 8.188 | 2.810 | 1.21     | 1.43         |                                                                         |
| XO SUB           | 6.875 | 3.875 | 0.79     | 2.22         |                                                                         |
| ECOSCOPE         | 8.250 | 2.000 | 8.46     | 10.68        | w/8-1/4" stab                                                           |
| TELESCOPE        | 6.900 | 5.109 | 7.81     | 18.49        |                                                                         |
| SONICVISION      | 8.250 | 5.157 | 10.12    | 28.61        |                                                                         |
| X-OVER           | 6.875 | 3.875 | 1.10     | 29.71        |                                                                         |
| DRILL COLLAR, NM | 6.750 | 2.810 | 8.09     | 37.80        |                                                                         |
| DRILL COLLAR, NM | 6.690 | 2.813 | 8.61     | 46.41        |                                                                         |
| FLOAT SUB        | 6.750 | 3.000 | 0.71     | 47.12        | Pressure tested 350 Bar, NP float                                       |
| FLOAT SUB        | 6.750 | 3.000 | 1.20     | 48.32        | Pressure tested 350 Bar, NP float                                       |
| PUP JOINT        | 6.375 | 2.750 | 2.60     | 50.92        | Running PUP                                                             |
| DRILL COLLAR     | 6.750 | 2.750 | 36.73    | 87.65        |                                                                         |
| DRILL COLLAR     | 6.750 | 2.750 | 35.41    | 123.06       |                                                                         |
| HYDRAULIC JAR    | 6.500 | 2.750 | 12.42    | 135.48       | w/Running PUP                                                           |
| DRILL COLLAR     | 6.750 | 2.750 | 26.36    | 161.84       |                                                                         |
| HW DRILL PIPE    | 6.500 | 3.000 | 111.70   | 273.54       |                                                                         |
| DRILL PIPE       | 6.625 | 4.276 | 19.19    | 292.73       |                                                                         |
| DART SUB         | 6.750 | 3.000 | 0.60     | 293.33       |                                                                         |
| DRILL PIPE       | 6.625 | 4.276 | 4000.00  | 4293.33      | DP to surface                                                           |

Page 157 of 196



Doc. No. 2022-013511

Pilot well NO 34/9-U-1

and Exploration well NO 34/9-1 S Cambozola Valid

Valid from: Dec 2022 Rev. no.: 0

**BHA NO:** 33

**RUN TYPE:** Drilling run

**DESCRIPTION:** Drill 8 1/2" section to TD

**RUN NAME:** 10

| String component   | OD in | ID in | Length m | Acc length m | Comment                    |
|--------------------|-------|-------|----------|--------------|----------------------------|
| BIT                | 8.500 | 2.250 | 0.22     | 0.22         | Bit Type Hyperblade YZ519S |
| BIT SUB            | 6.750 | 2.813 | 1.21     | 1.43         |                            |
| XO                 | 6.875 | 2.813 | 0.79     | 2.22         |                            |
| ECOSCOPE           | 8.250 | 2.000 | 8.46     | 10.68        |                            |
| TELESCOPE          | 6.900 | 5.100 | 7.81     | 18.49        |                            |
| SONIC TOOL-CBL     | 8.250 | 5.160 | 10.12    | 28.61        |                            |
| XO                 | 6.875 | 2.813 | 1.10     | 29.71        |                            |
| DRILL COLLAR, NM   | 6.750 | 2.813 | 8.09     | 37.80        |                            |
| DRILL COLLAR, NM   | 6.750 | 2.875 | 8.69     | 46.49        |                            |
| FLOAT SUB          | 6.750 | 2.875 | 1.24     | 47.73        | pressure test 350 bar      |
| FLOAT SUB          | 6.750 | 2.844 | 0.65     | 48.38        | pressure test 350 bar      |
| PUP JOINT          | 6.375 | 2.750 | 2.99     | 51.37        |                            |
| DRILL COLLAR STEEL | 6.750 | 2.750 | 72.14    | 123.51       |                            |
| JARS-HYD           | 6.500 | 2.750 | 9.47     | 132.98       |                            |
| DRILL COLLAR STEEL | 6.750 | 2.750 | 2.97     | 135.95       |                            |
| HWDP               | 6.500 | 3.000 | 111.70   | 247.65       |                            |
| DRILL PIPE         | 6.625 | 4.276 | 19.19    | 266.84       |                            |
| DART SUB           | 6.750 | 3.000 | 0.60     | 267.44       |                            |
| DRILL PIPE         |       |       | 1.00     | 268.44       |                            |



www.equinor.com

Final well report,

Doc. No. 2022-013511

Pilot well NO 34/9-U-1

and Exploration well NO 34/9-1 S Cambozola Valid from: Dec 2022 Rev. no.: 0

Status: Final

**BHA NO:** 37

**RUN TYPE:** Drilling run

**DESCRIPTION:** Drill 6" hole to corepoint or TD

**RUN NAME**: 11

Classification: Restricted

| String component   | OD in | ID in    | Length m | Acc length m | Comment        |
|--------------------|-------|----------|----------|--------------|----------------|
| BIT                | 6.000 |          | 0.19     | 0.19         | Bit Type VX613 |
| NEAR BIT STAB      | 5.840 |          | 1.69     | 1.88         |                |
| XO                 | 4.750 |          | 0.45     | 2.33         |                |
| IMPULSE            | 5.250 |          | 10.25    | 12.58        |                |
| VPWD               | 5.250 |          | 4.84     | 17.42        |                |
| ADN                | 5.875 |          | 7.62     | 25.04        |                |
| DRILL COLLAR, NM   | 4.750 |          | 9.21     | 34.25        |                |
| FLOAT SUB          | 4.813 |          | 0.95     | 35.20        |                |
| FLOAT SUB          | 4.800 |          | 0.96     | 36.16        |                |
| DRILL COLLAR STEEL | 4.750 |          | 107.23   | 143.39       |                |
| JARS-HYD           | 4.800 |          | 8.84     | 152.23       |                |
| DRILL COLLAR STEEL | 4.750 |          | 27.62    | 179.85       |                |
| XO                 | 4.750 |          | 1.23     | 181.08       |                |
| HWDP               | 5.250 |          | 113.49   | 294.57       |                |
| DRILL PIPE         | 5.250 |          | 38.50    | 333.07       |                |
| XO                 | 5.000 |          | 1.53     | 334.60       |                |
| DRILL PIPE         | 6.625 |          | 18.00    | 352.60       |                |
| DART SUB           | 4.750 | <u> </u> | 1.00     | 353.60       |                |
| DRILL PIPE         | 5.000 |          | 10.00    | 363.60       |                |



Doc. No. 2022-013511

Pilot well NO 34/9-U-1

and Exploration well NO 34/9-1 S Cambozola

Valid from: Dec 2022 Rev. no.: 0

**BHA NO:** 38

**RUN TYPE:** Logging OH Run

**DESCRIPTION:** OH WL run #1 (MSIP)

**RUN NAME:** 1

| String component | OD in | ID in | Length m | Acc length m | Comment |
|------------------|-------|-------|----------|--------------|---------|
| BNS-BOTTOM NOSE  | 3.375 |       | 0.14     | 0.14         |         |
| PPC1-B           | 4.300 |       | 1.99     | 2.13         |         |
| MAST-B           | 5.122 |       | 12.59    | 14.72        |         |
| PPC1-B           | 4.300 |       | 1.99     | 16.71        |         |
| SFT-270          | 3.375 |       | 1.22     | 17.93        |         |
| AH-184           | 3.375 |       | 1.22     | 19.15        |         |
| EDTC-B           | 3.625 |       | 1.98     | 21.13        |         |
| LEH-QT           | 3.375 |       | 1.06     | 22.19        |         |

**BHA NO**: 39

**RUN TYPE:** Cement run

**DESCRIPTION:** M/U and RIH with 3 1/2" cement stinger and set P&A plug #1

**RUN NAME:** 2

| String component | OD in | ID in | Length m | Acc length m | Comment                                           |
|------------------|-------|-------|----------|--------------|---------------------------------------------------|
| CEMENT STINGER   | 5.000 | 2.438 | 308.00   | 308.00       | 8 stands with 3.5" cement stinger and 4m muleshoe |
| XO SUB           | 6.625 | 2.310 | 1.07     | 309.07       | XO Pin x Box NC38 to NC50 BB                      |
| FLOAT SUB        | 6.750 | 2.810 | 1.01     | 310.08       |                                                   |
| DRILL PIPE       | 6.625 | 4.276 | 4144.90  | 4454.98      | 5" OD Drill Pipe, S-135, NC-50 DSTJ Conn's.       |

Page 160 of 196



Page 161 of 196

Final well report,

Doc. No. 2022-013511

Pilot well NO 34/9-U-1

and Exploration well NO 34/9-1 S Cambozola Valid from: Dec 2022

Rev. no.: 0

**BHA NO:** 40

**RUN TYPE:** Drilling run

**DESCRIPTION:** Dress-off and verify primary barrier with 6" BHA

| String component   | OD in | ID in | Length m | Acc length m | Comment         |
|--------------------|-------|-------|----------|--------------|-----------------|
| BIT                | 6.000 |       | 0.19     | 0.19         | Bit Type VX613. |
| NEAR BIT STAB      | 5.840 |       | 1.69     | 1.88         |                 |
| XO                 | 4.750 |       | 0.45     | 2.33         |                 |
| IMPULSE            | 5.250 |       | 10.25    | 12.58        |                 |
| VPWD               | 5.250 |       | 4.84     | 17.42        |                 |
| DRILL COLLAR, NM   | 4.750 |       | 9.93     | 27.35        |                 |
| FLOAT SUB          | 4.813 |       | 0.73     | 28.08        |                 |
| FLOAT SUB          | 4.800 |       | 0.89     | 28.97        |                 |
| PUP JOINT          | 5.875 |       | 2.97     | 31.94        |                 |
| DRILL COLLAR STEEL | 4.750 |       | 116.54   | 148.48       |                 |
| JARS-HYD           | 4.800 |       | 8.84     | 157.32       |                 |
| DRILL COLLAR STEEL | 4.750 |       | 27.62    | 184.94       |                 |
| XO                 | 4.750 |       | 1.23     | 186.17       |                 |
| HWDP               | 5.250 |       | 113.49   | 299.66       |                 |
| XO                 | 5.000 |       | 1.53     | 301.19       |                 |
| DRILL PIPE         | 6.625 | ·     | 19.19    | 320.38       |                 |
| DART SUB           | 4.750 |       | 0.60     | 320.98       |                 |
| DRILL PIPE         | 5.000 |       | 10.00    | 330.98       |                 |



Page 162 of 196

Final well report,

Doc. No. 2022-013511

Pilot well NO 34/9-U-1

and Exploration well NO 34/9-1 S Cambozola Valid from: Dec 2022 Rev. no.: 0

**BHA NO**: 41

**RUN TYPE:** Cement run

**DESCRIPTION:** Unplanned: RIH with cement stinger and set P&A plug #2

| String component | OD in | ID in | Length m | Acc length m | Comment                                           |
|------------------|-------|-------|----------|--------------|---------------------------------------------------|
| CEMENT STINGER   | 5.000 | 2.438 | 308.00   | 308.00       | 8 stands with 3.5" cement stinger and 4m muleshoe |
| XO SUB           | 6.625 | 2.310 | 1.07     | 309.07       | XO Pin x Box NC38 to NC50 BB                      |
| FLOAT SUB        | 6.750 | 2.810 | 1.01     | 310.08       |                                                   |
| DRILL PIPE       | 6.625 | 4.276 | 4144.90  | 4454.98      | 5" OD Drill Pipe, S-135, NC-50 DSTJ Conn's.       |



Page 163 of 196

Final well report,

Doc. No. 2022-013511

Pilot well NO 34/9-U-1

and Exploration well NO 34/9-1 S Cambozola

Valid from: Dec 2022 Rev. no.: 0

**BHA NO**: 42

RUN TYPE: Clean-out run

**DESCRIPTION:** Unplanned: Dress off and verify primary barrier against reservoir

| String component   | OD in | ID in | Length m | Acc length m | Comment         |
|--------------------|-------|-------|----------|--------------|-----------------|
| BIT                | 6.000 |       | 0.19     | 0.19         | Bit Type VX613. |
| NEAR BIT STAB      | 5.840 |       | 1.69     | 1.88         |                 |
| XO                 | 4.750 |       | 0.45     | 2.33         |                 |
| IMPULSE            | 5.250 |       | 10.25    | 12.58        |                 |
| VPWD               | 5.250 |       | 4.84     | 17.42        |                 |
| DRILL COLLAR, NM   | 4.750 |       | 9.93     | 27.35        |                 |
| FLOAT SUB          | 4.813 |       | 1.06     | 28.41        |                 |
| FLOAT SUB          | 4.800 |       | 0.96     | 29.37        |                 |
| PUP JOINT          | 5.875 |       | 2.97     | 32.34        |                 |
| DRILL COLLAR STEEL | 4.750 |       | 116.54   | 148.88       |                 |
| JARS-HYD           | 4.800 |       | 8.84     | 157.72       |                 |
| DRILL COLLAR STEEL | 4.750 |       | 27.62    | 185.34       |                 |
| XO                 | 4.750 |       | 1.23     | 186.57       |                 |
| HWDP               | 5.250 |       | 113.49   | 300.06       |                 |
| XO                 | 5.000 |       | 1.53     | 301.59       |                 |
| DRILL PIPE         | 6.625 |       | 19.19    | 320.78       |                 |
| DART SUB           | 4.750 |       | 0.60     | 321.38       |                 |
| DRILL PIPE         | 5.000 |       | 10.00    | 331.38       |                 |



Page 164 of 196

Final well report,

Doc. No. 2022-013511

Pilot well NO 34/9-U-1

and Exploration well NO 34/9-1 S Cambozola Valid from: Dec 2022

Valid from: Dec 2022 Rev. no.: 0

**BHA NO:** 43

**RUN TYPE:** Cement run

**DESCRIPTION:** Set cement plug from OH and into 9 7/8" casing. Secondary barrier to Intra Sola fm and Primary and secondary barriers to limestone stringers in Rødby

fm

| String component | OD in | ID in | Length m | Acc length m | Comment                                            |
|------------------|-------|-------|----------|--------------|----------------------------------------------------|
| CEMENT STINGER   | 5.000 | 2.438 | 383.00   | 383.00       | 10 stands with 3.5" cement stinger and 4m muleshoe |
| XO SUB           | 6.625 | 2.310 | 1.07     | 384.07       | XO Pin x Box NC38 to NC50 BB                       |
| FLOAT SUB        | 6.750 | 2.810 | 1.01     | 385.08       |                                                    |
| DRILL PIPE       | 6.625 | 4.276 | 3980.92  | 4366.00      | 5" OD Drill Pipe, S-135, NC-50 DSTJ Conn's.        |



Page 165 of 196

Final well report,

Doc. No. 2022-013511

Pilot well NO 34/9-U-1

and Exploration well NO 34/9-1 S Cambozola Valid from: Dec 2022

Rev. no.: 0

**BHA NO:** 44

RUN TYPE: Clean-out run

**DESCRIPTION:** Dress-off and tag 2nd cement plug inside 9 7/8" casing

| String component | OD in | ID in | Length m | Acc length m | Comment                     |
|------------------|-------|-------|----------|--------------|-----------------------------|
| BIT              |       | 2.250 | 0.23     | 0.23         | Milled tooth bit            |
| NEAR BIT STAB    |       | 3.000 | 1.85     | 2.08         | with NP float               |
| FLOAT SUB        |       | 3.000 | 0.71     | 2.79         | with NPFV (pressure tested) |
| FLOAT SUB        |       | 3.000 | 1.20     | 3.99         | with NPFV (pressure tested) |
| PUP              |       | 3.000 | 2.60     | 6.59         |                             |
| DRILL COLLAR     |       | 2.750 | 72.14    | 78.73        |                             |
| DRILL PIPE       |       | 4.276 | 19.19    | 97.92        |                             |
| DART SUB         |       | 3.000 | 0.60     | 98.52        |                             |
| DRILL PIPE       |       | 4.276 | 10.00    | 108.52       |                             |



Page 166 of 196

Final well report,

Doc. No. 2022-013511

Pilot well NO 34/9-U-1

and Exploration well NO 34/9-1 S Cambozola

Valid from: Dec 2022 Rev. no.: 0

**BHA NO:** 45

**RUN TYPE:** Cut casing run

**DESCRIPTION:** Cut 9 7/8" casing

| String component | OD in | ID in | Length m | Acc length m | Comment |
|------------------|-------|-------|----------|--------------|---------|
| TAPER MILL       |       | 2.250 | 1.38     | 1.38         |         |
| CUTTER           |       | 0.750 | 2.09     | 3.47         |         |
| STABILIZER       |       | 2.813 | 2.09     | 5.56         |         |
| STRING MAGNET    |       | 3.000 | 2.70     | 8.26         |         |
| FLOAT SUB        |       | 2.250 | 0.57     | 8.83         |         |
| PUP JT           |       | 2.250 | 2.96     | 11.79        |         |
| XO               |       | 2.813 | 1.12     | 12.91        |         |
| XO               |       | 2.250 | 0.61     | 13.52        |         |
| ULTRA MOTOR      |       |       | 9.59     | 23.11        |         |
| CIRCULATION SUB  |       | 1.875 | 0.56     | 23.67        |         |
| FLOAT SUB        |       | 2.250 | 1.00     | 24.67        |         |
| PUP JT           |       | 3.000 | 2.73     | 27.40        |         |



Page 167 of 196

Final well report,

Doc. No. 2022-013511

Pilot well NO 34/9-U-1

and Exploration well NO 34/9-1 S Cambozola Valid from: Dec 2022 Rev. no.: 0

**BHA NO**: 46

**RUN TYPE:** Wellhead run

**DESCRIPTION:** M/U and RIH with seal assembly retrival tool

| String component | OD in ID in |       | Length m | Acc length m | Comment          |
|------------------|-------------|-------|----------|--------------|------------------|
| JET SUB          |             |       | 0.85     | 0.85         |                  |
| PUP JT           |             |       | 3.68     | 4.53         |                  |
| DRILL PIPE       |             |       | 9.40     | 13.93        | 5 7/8" DP single |
| XO SUB           |             |       | 0.30     | 14.23        |                  |
| SPEAR PACK-OFF   |             | 2.750 | 0.95     | 15.18        |                  |
| PUP JT           |             | 2.750 | 2.86     | 18.04        |                  |
| DRILL PIPE       |             |       | 9.40     | 27.44        | 5 7/8" DP single |
| PUP JOINT        |             |       | 2.37     | 29.81        | 5 7/8" pup joint |
| SRT              |             |       |          | 29.81        |                  |



Doc. No. 2022-013511

Pilot well NO 34/9-U-1

and Exploration well NO 34/9-1 S Cambozola Valid from: Dec 2022

Status: Final

Rev. no.: 0

**BHA NO**: 49

RUN TYPE: Clean-out run

**DESCRIPTION:** Dress-off and verify cement plug inside 14" casing (Primary and secondary Tryggvason Fm.)

**RUN NAME:** 4

| String component | OD in | ID in | Length m | Acc length m | Comment           |
|------------------|-------|-------|----------|--------------|-------------------|
| BIT              |       |       | 0.33     | 0.33         |                   |
| NB STAB W/FLOAT  |       | 3.250 | 1.52     | 1.85         |                   |
| SPIRAL DC        |       | 3.000 | 75.60    | 77.45        |                   |
| XO               |       | 3.000 | 1.23     | 78.68        | 6 5/8" Reg x XT57 |
| HWDP             |       | 4.000 | 113.40   | 192.08       |                   |
| DRILL PIPE       |       | 5.045 | 9.72     | 201.80       |                   |

**BHA NO**: 51

RUN TYPE: Clean-out run

**DESCRIPTION:** Dress-off and tag 2nd cement plug inside 14" casing. Primary and secondary barrier to Lista fm.

**RUN NAME:** 5

Classification: Restricted

| String component | OD in | ID in | Length m | Acc length m | Comment           |
|------------------|-------|-------|----------|--------------|-------------------|
| BIT              |       |       | 0.33     | 0.33         |                   |
| NB STAB W/FLOAT  |       | 3.250 | 1.52     | 1.85         |                   |
| SPIRAL DC        |       | 3.000 | 75.60    | 77.45        |                   |
| хо               |       | 3.000 | 1.23     | 78.68        | 6 5/8" Reg x XT57 |
| HWDP             |       | 4.000 | 113.40   | 192.08       |                   |
| DRILL PIPE       |       | 5.045 | 9.72     | 201.80       |                   |

www.equinor.com



Page 169 of 196

Final well report,

Doc. No. 2022-013511

Pilot well NO 34/9-U-1

and Exploration well NO 34/9-1 S Cambozola

Valid from: Dec 2022 Rev. no.: 0

**BHA NO:** 52

**RUN TYPE:** Cut casing run

**DESCRIPTION:** M/U and RIH with 14in casing cutter

| String component | OD in | ID in | Length m | Acc length m | Comment                       |
|------------------|-------|-------|----------|--------------|-------------------------------|
| TAPER MILL       |       | 3.500 | 1.62     | 1.62         |                               |
| XO               |       | 3.000 | 0.47     | 2.09         | 6 5/8 Reg pin x 6 5/8 Reg pin |
| CUTTER           |       | 0.750 | 3.74     | 5.83         |                               |
| STABILIZER       |       | 2.750 | 2.13     | 7.96         |                               |
| STRING MAGNET    |       | 3.000 | 2.82     | 10.78        |                               |
| FLOAT SUB        |       | 2.875 | 1.02     | 11.80        | Non ported                    |
| XO               |       | 2.875 | 1.19     | 12.99        | XT57 box x 6 5/8 Reg pin      |
| PUP JT           |       | 4.000 | 2.85     | 15.84        |                               |
| XO               |       | 2.813 | 1.12     | 16.96        | 4 1/2" IF Box x XT57 pin      |
| XO               |       | 2.250 | 0.61     | 17.57        |                               |
| ULTRA MOTOR      |       |       | 9.59     | 27.16        |                               |
| CIRCULATION SUB  |       | 1.875 | 0.59     | 27.75        |                               |
| FLOAT SUB        |       | 2.250 | 0.48     | 28.23        |                               |
| PUP JT           |       | 3.000 | 2.91     | 31.14        |                               |



Page 170 of 196

Final well report,

Doc. No. 2022-013511

Pilot well NO 34/9-U-1

and Exploration well NO 34/9-1 S Cambozola Valid from: Dec 2022 Rev. no.: 0

**BHA NO:** 53

**RUN TYPE:** Wellhead run

**DESCRIPTION:** RIH with SRT and spear to pull 14" SA and casing

| String component | OD in | ID in | Length m | Acc length m | Comment                  |
|------------------|-------|-------|----------|--------------|--------------------------|
| BULL NOSE        |       | 3.500 | 0.38     | 0.38         |                          |
| SPEAR PACK-OFF   |       | 2.750 | 0.94     | 1.32         |                          |
| XO               |       | 2.750 | 1.23     | 2.55         | NC50 box x 6 5/8 Reg pin |
| SPEAR            |       |       | 1.93     | 4.48         | Hydraulic casing spear   |
| BUMPER SUB       |       | 3.000 | 2.62     | 7.10         | Lubr Bumper sub          |
| PUP JOINT        |       | 3.000 | 2.79     | 9.89         | 5 7/8" pup joint         |
| HWDP             |       | 4.000 | 28.80    | 38.69        | 5 7/8" HWDP              |
| SRT              |       |       | 9.07     | 47.76        |                          |



Page 171 of 196

Final well report,

Doc. No. 2022-013511

Pilot well NO 34/9-U-1

and Exploration well NO 34/9-1 S Cambozola

Valid from: Dec 2022 Rev. no.: 0

**BHA NO:** 56

**RUN TYPE:** Cut casing run

**DESCRIPTION:** Cut and pull LPWHHH/HPWHH

| String component | OD in  | ID in | Length m | Acc length m | Comment                         |
|------------------|--------|-------|----------|--------------|---------------------------------|
| BULLNOSE         | 9.000  | 2.750 | 0.95     | 0.95         |                                 |
| STABILIZER       | 17.500 | 2.750 | 1.83     | 2.78         |                                 |
| CUTTER           | 17.250 | 0.625 | 3.71     | 6.49         |                                 |
| EXTENSION        | 8.000  | 3.000 | 0.48     | 6.97         |                                 |
| EXTENSION        | 8.000  | 3.500 | 1.02     | 7.99         |                                 |
| PULLING TOOL     | 26.000 | 3.500 | 5.29     | 13.28        | UWRS                            |
| BUMPER SUB       | 8.250  | 3.500 | 2.75     | 16.03        |                                 |
| DRILL COLLAR     | 8.250  | 2.800 | 72.00    | 88.03        | 6 5/8" Reg box x 6 5/8" Reg pin |
| XO               |        |       |          | 88.03        |                                 |
| HWDP             | 7.000  | 4.000 | 110.00   | 198.03       | 5 7/8" HWDP                     |



Page 172 of 196

Final well report,
Pilot well NO 34/9-U-1
and Exploration well NO 34/9-1 S Cambozola

Doc. No. 2022-013511

Valid from: Dec 2022 Rev. no.: 0

# App M Drilling fluids

See table 1-4 for details of the drilling fluid.



Page 173 of 196

Final well report,

Doc. No. 2022-013511

Pilot well NO 34/9-U-1

and Exploration well NO 34/9-1 S Cambozola Valid from: Dec 2022 Rev. no.: 0

## **App N** Cementing data (table)

## Casing/Liner cementing

WELLBORE ID: NO 34/9-1 S

**CASING SIZE: 36"** 

STAGE CEMENTING: 0
REPORT DATE: 11.Apr.2022
THEORETHICAL TOC: 412 mMD

THEORETHICAE TOC. 412 II

EVALUATED TOC: mMD
EVALUATED BY BOND LOG:
LINER ROTATION PLANNED: N
LINER ROTATION ACHIEVED: N

**REMARKS:** 

## Objective:

4/11/2022 12:00:00 AM

Primary: Achieve Top of Cement at seabed

Secondary: Provide structural support for drilling ahead

#### **Execution:**

4/11/2022 12:00:00 AM

Excess was increased from 300% to 350% resulted that slurry volume increased from 54.6m3 to 61.5m3 Job went according to the plan.



Page 174 of 196

Final well report,

Doc. No. 2022-013511

Pilot well NO 34/9-U-1

and Exploration well NO 34/9-1 S Cambozola

Valid from: Dec 2022 Rev. no.: 0

| Fluids<br>pumped | Туре                | Density<br>g/cm3 | Volume<br>m3 | Pump<br>Rate<br>I/min | Pump<br>Press<br>bar | Return | Component       | Quantity | Unit     | Density<br>g/cm3 | Premixed in mixwater |
|------------------|---------------------|------------------|--------------|-----------------------|----------------------|--------|-----------------|----------|----------|------------------|----------------------|
| Preflush         | Sea Water           | 1.03             | 55.0         | 3000                  |                      |        |                 |          |          |                  |                      |
| Slurry           | #5-Slurry ST (IDWS) | 1.70             | 61.5         | 900                   |                      |        | Class C Cement  | 100.00   | %        | 3.12             | N                    |
|                  |                     |                  |              |                       |                      |        | D240 Dispersant | 2.00     | kg/100kg | 1.13             | Ν                    |
|                  |                     |                  |              |                       |                      |        | D242 Antifoam   | 0.10     | kg/100kg | 0.90             | N                    |
|                  |                     |                  |              |                       |                      |        | Seawater        | 65.91    | kg/100kg | 1.03             | N                    |
| Displacement     | Sea Water           | 1.03             | 30.5         | 3000                  |                      |        |                 |          |          |                  |                      |

## **Evaluation:**

4/11/2022 12:00:00 AM

Job went according to the plan



Page 175 of 196

Final well report,

Doc. No. 2022-013511

Pilot well NO 34/9-U-1

and Exploration well NO 34/9-1 S Cambozola Valid from: Dec 2022 Rev. no.: 0

CASING SIZE: 20"

**STAGE CEMENTING:** 0

REPORT DATE: 14.Apr.2022

THEORETHICAL TOC: 412 mMD

**EVALUATED TOC:** mMD

**EVALUATED BY BOND LOG:** 

**LINER ROTATION PLANNED:** N

**LINER ROTATION ACHIEVED: N** 

**REMARKS:** 

## Objective:

4/14/2022 12:00:00 AM

Primary: Provide sufficient shoe integrity for drilling ahead

Secondary: Provide structural support for the wellhead and BOP by having planned TOC at seabed

Execution:

4/14/2022 12:00:00 AM



Doc. No. 2022-013511

Valid from: Dec 2022

Pilot well NO 34/9-U-1

and Exploration well NO 34/9-1 S Cambozola

| Fluids<br>pumped | Туре                   | Density g/cm3 | Volume<br>m3 | Pump<br>Rate<br>I/min | Pump<br>Press<br>bar | Return | Component                           | Quantity | Unit    | Density<br>g/cm3 | Premixed in mixwater |
|------------------|------------------------|---------------|--------------|-----------------------|----------------------|--------|-------------------------------------|----------|---------|------------------|----------------------|
| Preflush         | Sea Water              | 1.03          | 206.0        | 3000                  |                      |        |                                     |          |         |                  |                      |
| Spacer before    | MUDPUSH II             | 1.50          | 20.0         | 3000                  |                      |        | D244 Viscosifier                    | 3.30     | kg/m3   | 1.50             | Υ                    |
|                  |                        |               |              |                       |                      |        | D242 Antifoam                       | 1.00     | I/m3    | 0.90             | Y                    |
|                  |                        |               |              |                       |                      |        | DRILL WATER                         | 842.57   | I/m3    | 1.00             | Υ                    |
|                  |                        |               |              |                       |                      |        | D31 BARITE                          | 655.80   | kg/m3   | 4.25             | Υ                    |
| Lead             | #21-Slurry SHFP (IDWS) | 1.65          | 102.0        | 900                   |                      |        | D240 Dispersant                     | 4.20     | l/100kg | 1.13             | Υ                    |
|                  |                        |               |              |                       |                      |        | D242 Antifoam                       | 0.10     | l/100kg | 0.90             | Υ                    |
|                  |                        |               |              |                       |                      |        | D155 Antisedimentation agent        | 24.00    | l/100kg | 1.40             | Y                    |
|                  |                        |               |              |                       |                      |        | D193 Fluid Loss Control<br>Additive | 3.00     | l/100kg | 1.00             | Y                    |
|                  |                        |               |              |                       |                      |        | D81 Liquid Retarder                 | 1.60     | l/100kg | 1.22             | Υ                    |
|                  |                        |               |              |                       |                      |        | D903 Cement Class C                 | 100.00   | %       | 3.12             | Y                    |
| Tail             | #21-Slurry SHFP (IDWS) | 1.65          | 81.0         | 900                   |                      |        | D240 Dispersant                     | 4.00     | l/100kg | 1.13             | N                    |
|                  |                        |               |              |                       |                      |        | D242 Antifoam                       | 0.10     | l/100kg | 0.90             | N                    |
|                  |                        |               |              |                       |                      |        | D155 Antisedimentation agent        | 24.00    | l/100kg | 1.40             | N                    |
|                  |                        |               |              |                       |                      |        | D193 Fluid Loss Control<br>Additive | 3.20     | l/100kg | 1.00             | N                    |
|                  |                        |               |              |                       |                      |        | D903 Cement Class C                 | 100.00   | %       | 3.12             | N                    |
| Spacer after     | MUDPUSH II             | 1.50          | 2.4          | 3000                  |                      |        | D244 Viscosifier                    | 3.30     | kg/m3   | 1.50             | Υ                    |
|                  |                        |               |              |                       |                      |        | D242 Antifoam                       | 1.00     | I/m3    | 0.90             | Υ                    |
|                  |                        |               |              |                       |                      |        | D31 BARITE                          | 655.80   | kg/m3   | 4.25             | Y                    |
|                  |                        |               |              |                       |                      |        | Drill Water                         | 842.57   | I/m3    | 1.00             | Y                    |

Rev. no.: 0



Doc. No. 2022-013511

Pilot well NO 34/9-U-1

and Exploration well NO 34/9-1 S Cambozola Valid from: Dec 2022 Rev. no.: 0

Evaluation: 4/14/2022 12:00:00 AM

**CASING SIZE: 36"** 

**STAGE CEMENTING**: 0

**REPORT DATE:** 16.Apr.2022

THEORETHICAL TOC: 412 mMD

**EVALUATED TOC:** mMD

**EVALUATED BY BOND LOG:** 

LINER ROTATION PLANNED: N
LINER ROTATION ACHIEVED: N

**REMARKS:** 

Objective:

4/16/2022 12:00:00 AM

Check for TOC outside 36"conductor

Grout outside 36" conductor

#### **Execution:**

4/16/2022 12:00:00 AM

Mix and pumped 17m3 G-cement slurry at 1.95sg until Silo 110 is empty

| Fluids<br>pumped | Туре                | Density g/cm3 | Volume<br>m3 | Pump<br>Rate<br>I/min | Pump<br>Press<br>bar | Return | Component              | Quantity | Unit    | Density<br>g/cm3 | Premixed in mixwater |
|------------------|---------------------|---------------|--------------|-----------------------|----------------------|--------|------------------------|----------|---------|------------------|----------------------|
| Slurry           | #5-Slurry ST (IDWS) | 1.95          | 17.0         | 600                   | 50                   |        | D242 Antifoam          | 0.10     | l/100kg | 0.90             | N                    |
|                  |                     |               |              |                       |                      |        | D77 Liquid Accelerator | 0.50     | l/100kg | 1.38             | N                    |
|                  |                     |               |              |                       |                      |        | Class G Cement         | 100.00   | %       | 3.20             | N                    |
| Displacement     | Sea Water           | 1.03          | 1.5          | 500                   | 40                   |        |                        |          |         |                  |                      |

Page 177 of 196



Page 178 of 196

Final well report,

Pilot well NO 34/9-U-1

and Exploration well NO 34/9-1 S Cambozola

Doc. No. 2022-013511

Valid from: Dec 2022 Rev. no.: 0

#### **Evaluation:**

4/16/2022 12:00:00 AM

Job went according to Plan

REPORT DATE: 17.Apr.2022

THEORETHICAL TOC: 412 mMD

**EVALUATED TOC:** mMD

**EVALUATED BY BOND LOG: LINER ROTATION PLANNED:** N

**LINER ROTATION ACHIEVED: N** 

**REMARKS:** 

## Objective:

4/17/2022 12:00:00 AM

Check for "TOC" outside 36" conductor

Grout outside 36" conductor with cement, Pump ca 18 m3 C cement

### **Execution:**

4/17/2022 12:00:00 AM

Mixed and pump 19.5 m3 slurry until silo was empty of c-cement.



Page 179 of 196

Final well report,

Doc. No. 2022-013511

Pilot well NO 34/9-U-1

and Exploration well NO 34/9-1 S Cambozola

Valid from: Dec 2022 Rev. no.: 0

| Fluids<br>pumped | Туре                | Density<br>g/cm3 | Volume<br>m3 | Pump<br>Rate<br>I/min | Pump<br>Press<br>bar | Return | Component       | Quantity | Unit    | Density<br>g/cm3 | Premixed in mixwater |
|------------------|---------------------|------------------|--------------|-----------------------|----------------------|--------|-----------------|----------|---------|------------------|----------------------|
| Slurry           | #5-Slurry ST (IDWS) | 1.70             | 19.5         | 700                   | 25                   |        | Class C Cement  | 100.00   | %       | 3.12             | N                    |
|                  |                     |                  |              |                       |                      |        | D240 Dispersant | 2.00     | l/100kg | 1.13             | N                    |
|                  | _                   |                  |              |                       |                      |        | D242 Antifoam   | 0.10     | l/100kg | 0.90             | N                    |
| Displacement     | Sea Water           | 1.03             | 1.0          | 850                   | 35                   |        |                 |          |         |                  |                      |

## **Evaluation:**

4/17/2022 12:00:00 AM

Job went according to the plan

**CASING SIZE: 14"** 

**STAGE CEMENTING:** 0

REPORT DATE: 22.Apr.2022

THEORETHICAL TOC: 1750 mMD

**EVALUATED TOC:** 1474 mMD

**EVALUATED BY BOND LOG:** Bond log

**LINER ROTATION PLANNED:** N **LINER ROTATION ACHIEVED:** N

**REMARKS:** 

## Objective:

Place 1712 m of hydraulic isolating cement in the 14 x 17.5 annulus



Doc. No. 2022-013511

Pilot well NO 34/9-U-1

and Exploration well NO 34/9-1 S Cambozola

Valid from: Dec 2022 Rev. no.: 0

## **Execution:**

Not possible to pump the given slurry recipe. Reduced density to 1.92 sg with ca 400 lpm.

| Fluids        |                        | Density | Volume | Pump  | Pump  |        |                              |          |         | Density | Premixed |
|---------------|------------------------|---------|--------|-------|-------|--------|------------------------------|----------|---------|---------|----------|
| pumped        | Туре                   |         | m3     | Rate  | Press | Return | Component                    | Quantity | Unit    |         | in       |
| panipea       |                        | g/cm3   | 1113   | l/min | bar   |        |                              |          |         | g/cm3   | mixwater |
| Slurry        | #18-Slurry HTGT (IDWS) | 1.95    | 117.0  | 400   | 20    |        | D240 Dispersant              | 3.20     | l/100kg |         | N        |
|               |                        |         |        |       |       |        | D242 Antifoam                | 0.10     | l/100kg |         | N        |
|               |                        |         |        |       |       |        | D155 Antisedimentation agent | 8.00     | l/100kg |         | N        |
|               |                        |         |        |       |       |        | D168 UNIFLAC L               | 3.80     | l/100kg |         | N        |
|               |                        |         |        |       |       |        | D75 Silicate Additive        | 1.00     | l/100kg |         | N        |
|               |                        |         |        |       |       |        | Freshwater                   | 40.30    | l/100kg |         | N        |
|               |                        |         |        |       |       |        | Cement Silica Blend          | 101.32   | l/100kg |         | N        |
| Spacer before | SHIELDBOND spacer      | 1.50    | 20.0   | 2500  | 50    |        | D241A                        | 21.00    | I/m3    |         | Υ        |
|               |                        |         |        |       |       |        | B557                         | 21.00    | I/m3    |         | Y        |
|               |                        |         |        |       |       |        | CEMFIT Shield                | 20.00    | kg/m3   |         | Y        |
|               |                        |         |        |       |       |        | D240 Dispersant              | 10.00    | I/m3    |         | Y        |
|               |                        |         |        |       |       |        | D244 Viscosifier             | 2.00     | kg/m3   |         | Y        |
|               |                        |         |        |       |       |        | D242 Antifoam                | 1.00     | I/m3    |         | Y        |
|               |                        |         |        |       |       |        | D31 BARITE                   | 647.95   | kg/m3   |         | Υ        |
|               |                        |         |        |       |       |        | Freshwater                   | 780.17   | kg/m3   |         | Υ        |
| Spacer after  | SHIELDBOND spacer      | 1.50    | 1.5    | 2500  | 60    |        | D241A                        | 21.00    | I/m3    |         | Υ        |
|               |                        |         |        |       |       |        | B557                         | 21.00    | I/m3    |         | Υ        |
|               |                        |         |        |       |       |        | CEMFIT Shield                | 20.00    | kg/m3   |         | Y        |



Page 181 of 196

Final well report,

Doc. No. 2022-013511

Pilot well NO 34/9-U-1

and Exploration well NO 34/9-1 S Cambozola

Valid from: Dec 2022 Rev. no.: 0

| Fluids<br>pumped | Туре | Density<br>g/cm3 | Volume<br>m3 | Pump<br>Rate<br>I/min | Pump<br>Press<br>bar | Return | Component        | Quantity | Unit  | Density<br>g/cm3 | Premixed in mixwater |
|------------------|------|------------------|--------------|-----------------------|----------------------|--------|------------------|----------|-------|------------------|----------------------|
|                  |      |                  |              |                       |                      |        | D240 Dispersant  | 12.00    | I/m3  |                  | Y                    |
|                  |      |                  |              |                       |                      |        | D244 Viscosifier | 2.00     | kg/m3 |                  | Υ                    |
|                  |      |                  |              |                       |                      |        | D242 Antifoam    | 1.00     | I/m3  |                  | Y                    |
|                  |      |                  |              |                       |                      |        | Freshwater       | 780.17   |       |                  | Υ                    |

## **Evaluation:**

Struggled with not enough mixing energy the whole job.



Doc. No. 2022-013511

Pilot well NO 34/9-U-1

and Exploration well NO 34/9-1 S Cambozola

Valid from: Dec 2022 Rev. no.: 0

CASING SIZE: 11 3/4"
STAGE CEMENTING: 0
REPORT DATE: 30.Apr.2022
THEORETHICAL TOC: 3477 mMD

EVALUATED TOC: 3450 mMD

**EVALUATED BY BOND LOG:** Bond log

**LINER ROTATION PLANNED:** Y **LINER ROTATION ACHIEVED:** Y

**REMARKS:** 

Objective:

4/30/2022 12:00:00 AM

**Execution:** 

4/30/2022 12:00:00 AM

| Fluids<br>pumped | Туре                   | Density<br>g/cm3 | Volume<br>m3 | Pump<br>Rate<br>I/min | Pump<br>Press<br>bar | Return | Component | Quantity | Unit | Density g/cm3 | Premixed in mixwater |
|------------------|------------------------|------------------|--------------|-----------------------|----------------------|--------|-----------|----------|------|---------------|----------------------|
| Spacer before    | SHIELDBOND spacer      | 1.75             | 20.0         | 1850                  | 115                  |        |           |          |      |               |                      |
| Tail             | #17-Slurry HTGT (IDWS) | 1.95             | 12.9         | 400                   | 35                   |        |           |          |      |               |                      |
| Spacer after     | SHIELDBOND spacer      | 1.75             | 1.5          | 1000                  | 38                   |        |           |          |      |               |                      |

Page 182 of 196

#### **Evaluation:**

4/30/2022 12:00:00 AM



Page 183 of 196

Final well report,

Doc. No. 2022-013511

Pilot well NO 34/9-U-1

and Exploration well NO 34/9-1 S Cambozola

Valid from: Dec 2022 Rev. no.: 0

CASING SIZE: 9 7/8"
STAGE CEMENTING: 0

**REPORT DATE:** 11.May.2022

THEORETHICAL TOC: 4217.3 mMD

EVALUATED TOC: mMD
EVALUATED BY BOND LOG:
LINER ROTATION PLANNED:
LINER ROTATION ACHIEVED:

**REMARKS:** 

Objective:

5/11/2022 12:00:00 AM

Execution:

5/11/2022 12:00:00 AM



Doc. No. 2022-013511

Valid from: Dec 2022

Pilot well NO 34/9-U-1

and Exploration well NO 34/9-1 S Cambozola

| Fluids pumped    | Туре                   | Density | Volume<br>m3 | Pump<br>Rate | Pump<br>Press | Return | Component                      | Quantity | Unit  | Density | Premixed in |
|------------------|------------------------|---------|--------------|--------------|---------------|--------|--------------------------------|----------|-------|---------|-------------|
| PP               |                        | g/cm3   |              | l/min        | bar           |        |                                |          |       | g/cm3   | mixwater    |
| Spacer before    | SHIELDBOND spacer      | 1.96    | 15.0         | 300          | 17            |        | D241A                          | 21.00    | I/m3  | 0.81    | N           |
|                  |                        |         |              |              |               |        | B557                           | 21.00    | I/m3  | 0.99    | N           |
|                  |                        |         |              |              |               |        | D244 Viscosifier               | 1.00     | kg/m3 | 1.50    | N           |
|                  |                        |         |              |              |               |        | D242 Antifoam                  | 1.00     | I/m3  | 0.90    | N           |
|                  |                        |         |              |              |               |        | BARITE                         | 1248.56  | kg/m3 | 4.25    | N           |
|                  |                        |         |              |              |               |        | B151 High-Temperature Retarder | 16.00    | l/m3  | 1.13    | N           |
|                  |                        |         |              |              |               |        | B143 Antifoam                  | 20.00    | kg/m3 | 1.80    | N           |
|                  |                        |         |              |              |               |        | Fresh water                    | 635.58   | I/m3  | 1.00    | N           |
| Spacer before #2 | Spacer OBM (IDWS)      | 2.10    | 8.5          | 300          | 15            |        | D241A                          | 21.00    | I/m3  | 0.81    | N           |
|                  |                        |         |              |              |               |        | B557                           | 21.00    | I/m3  | 0.99    | N           |
|                  |                        |         |              |              |               |        | D244 Viscosifier               | 1.40     | kg/m3 | 1.50    | N           |
|                  |                        |         |              |              |               |        | D242 Antifoam                  | 1.00     | I/m3  | 0.90    | N           |
|                  |                        |         |              |              |               |        | BARITE                         | 1442.92  | kg/m3 | 4.25    | N           |
|                  |                        |         |              |              |               |        | B151 High-Temperature Retarder | 16.00    | I/m3  | 1.13    | N           |
|                  |                        |         |              |              |               |        | Fresh water                    | 600.72   | I/m3  | 1.00    | N           |
| Tail             | #18-Slurry HTGT (IDWS) | 2.15    | 8.1          | 400          | 23            |        |                                |          |       |         |             |

Rev. no.: 0

## **Evaluation:**

5/11/2022 12:00:00 AM



Doc. No. 2022-013511

Pilot well NO 34/9-U-1

and Exploration well NO 34/9-1 S Cambozola Valid from: Dec 2022 Rev. no.: 0

**CASING SIZE: 7"** 

**STAGE CEMENTING:** 0

REPORT DATE: 25.May.2022

THEORETHICAL TOC: 4244 mMD

**EVALUATED TOC: mMD** 

**EVALUATED BY BOND LOG:** 

**LINER ROTATION PLANNED:** Y

**LINER ROTATION ACHIEVED:** Y

**REMARKS:** 

Objective:

5/25/2022 12:00:00 AM

Primary: Pump 5.0 m3 of hydraulically isolating cement in the 7" x 8-1/2" annulus

Secondary: Provide sufficient shoe integrity for drilling the 6" section.

**Execution:** 

5/25/2022 12:00:00 AM

Spacer 2.1 SG

Batchmixed 2.15 SG Slurry

| Fluids<br>pumped | Туре       | Density<br>g/cm3 | Volume<br>m3 | Pump<br>Rate<br>I/min | Pump<br>Press<br>bar | Return | Component   | Quantity | Unit | Density<br>g/cm3 | Premixed in mixwater |
|------------------|------------|------------------|--------------|-----------------------|----------------------|--------|-------------|----------|------|------------------|----------------------|
| Spacer before    | MUDPUSH II | 2.10             | 7.5          | 800                   | 70                   |        | D241A       | 21.00    | l/m3 | 0.81             | Υ                    |
|                  |            |                  |              |                       |                      |        | B557        | 21.00    | l/m3 | 0.99             | Υ                    |
|                  |            |                  |              |                       |                      |        | DRILL WATER | 600.72   | I/m3 | 1.00             | Υ                    |

Page 185 of 196



Doc. No. 2022-013511

Valid from: Dec 2022

Pilot well NO 34/9-U-1

and Exploration well NO 34/9-1 S Cambozola

| Fluids<br>pumped | Туре                   | Density<br>g/cm3 | Volume<br>m3 | Pump<br>Rate<br>I/min | Pump<br>Press<br>bar | Return | Component                               | Quantity | Unit    | Density<br>g/cm3 | Premixed in mixwater |
|------------------|------------------------|------------------|--------------|-----------------------|----------------------|--------|-----------------------------------------|----------|---------|------------------|----------------------|
|                  |                        |                  |              |                       |                      |        | D244 Viscosifier                        | 1.40     | kg/m3   | 1.50             | Υ                    |
|                  |                        |                  |              |                       |                      |        | D242 Antifoam                           | 0.10     | l/100kg | 0.90             | Υ                    |
|                  |                        |                  |              |                       |                      |        | B151 High-Temperature<br>Retarder       | 16.00    | I/m3    | 1.13             | Y                    |
|                  |                        |                  |              |                       |                      |        | D31 BARITE                              | 1442.92  | kg/m3   | 4.25             | Υ                    |
| Tail             | #18-Slurry HTGT (IDWS) | 2.15             | 5.0          | 600                   | 50                   |        | DRILL WATER                             | 39.46    | l/100kg | 1.00             | Υ                    |
|                  |                        |                  |              |                       |                      |        | D240 Dispersant                         | 5.00     | l/100kg | 1.13             | Υ                    |
|                  |                        |                  |              |                       |                      |        | D242 Antifoam                           | 0.10     | l/100kg | 0.90             | Υ                    |
|                  |                        |                  |              |                       |                      |        | D155 Antisedimentation agent            | 9.00     | l/100kg | 1.40             | Y                    |
|                  |                        |                  |              |                       |                      |        | D168 UNIFLAC L                          | 2.50     | l/100kg | 1.08             | Υ                    |
|                  |                        |                  |              |                       |                      |        | D194 Liquid Trifunctional<br>Additive   | 2.80     | l/100kg | 1.31             | Y                    |
|                  |                        |                  |              |                       |                      |        | D66 Silica Flour                        | 35.00    | %       | 2.65             | Υ                    |
|                  |                        |                  |              |                       |                      |        | D176High Temperature Expanding Additive | 2.00     | %       | 3.54             | Y                    |
|                  |                        |                  |              |                       |                      |        | D157 Weighting Agent                    | 40.00    | %       | 4.80             | Y                    |
|                  |                        |                  |              |                       |                      |        | Class G Cement                          | 100.00   | %       | 3.21             | Υ                    |
| Spacer after     | MUDPUSH II             | 2.10             | 2.5          | 800                   | 70                   |        | D241A                                   | 21.00    | I/m3    | 0.81             | Υ                    |
|                  |                        |                  |              |                       |                      |        | B557                                    | 21.00    | I/m3    | 0.99             | Y                    |
|                  |                        |                  |              |                       |                      |        | DRILL WATER                             | 600.72   | l/100kg | 1.00             | Y                    |
|                  |                        |                  |              |                       |                      |        | D244 Viscosifier                        | 1.40     | kg/m3   | 1.50             | Y                    |
|                  |                        |                  |              |                       |                      |        | D242 Antifoam                           | 1.00     | I/m3    | 0.90             | Y                    |

Rev. no.: 0



Page 187 of 196

Final well report,

Doc. No. 2022-013511

Pilot well NO 34/9-U-1

and Exploration well NO 34/9-1 S Cambozola

Valid from: Dec 2022 Rev. no.: 0

| Fluids<br>pumped | Туре | Density | Volume<br>m3 | Pump<br>Rate | Pump<br>Press | Return | Component             | Quantity | Unit   | Density | Premixed in |
|------------------|------|---------|--------------|--------------|---------------|--------|-----------------------|----------|--------|---------|-------------|
| papou            |      | g/cm3   |              | l/min        | bar           |        |                       |          |        | g/cm3   | mixwater    |
|                  |      |         |              |              |               |        | B151 High-Temperature | 16.00    | I/m3   | 1.13    | <b>V</b>    |
|                  |      |         |              |              |               |        | Retarder              | 10.00    | 1/1110 | 1.13    | '           |
|                  |      |         |              |              |               |        | D31 BARITE            | 1442.92  | kg/m3  | 4.25    | Υ           |

## **Evaluation:**

5/25/2022 12:00:00 AM

Job went according to the plan



Doc. No. 2022-013511

Pilot well NO 34/9-U-1

and Exploration well NO 34/9-1 S Cambozola

Valid from: Dec 2022 Rev. no.: 0

## **Plugging**

WELLBORE ID: NO 34/9-1 S REPORT DATE: 05.Jun.2022

PLUG NO: 1

**TOP DEPTH:** 4355

**BOTTOM DEPTH:** 4455

**CASING SIZE:** 7"

HOLE DIAMETER: 6"
CEMENTING TYPE:

**REMARKS:** Primary barrier against Sola siltstone in 6" reservoir section. Theoretical TOC inside liner at 4355m. Tagged deep at 4410m which was 5m below potential influx zone (Sola siltstone) in reservoir. A new plug was needed to place primary barrier against reservoir.

## Objective:

6/5/2022 12:00:00 AM

#### **Execution:**

6/5/2022 12:00:00 AM

| Fluids<br>pumped | Туре                   | Density g/cm3 | Volume<br>m3 | Pump<br>Rate<br>I/min | Pump<br>Press<br>bar | Return | Component | Quantity | Unit | Density<br>g/cm3 | Premixed in mixwater |
|------------------|------------------------|---------------|--------------|-----------------------|----------------------|--------|-----------|----------|------|------------------|----------------------|
| Spacer before    | MUDPUSH II             | 2.10          | 6.5          | 800                   | 72                   |        |           |          |      |                  |                      |
| Slurry           | #18-Slurry HTGT (IDWS) | 2.15          | 5.0          | 550                   | 65                   |        |           |          |      |                  |                      |
| Spacer after     | MUDPUSH II             | 2.10          | 1.5          | 500                   | 50                   |        |           |          |      |                  |                      |

#### **Evaluation:**

6/5/2022 12:00:00 AM



Doc. No. 2022-013511

Pilot well NO 34/9-U-1

and Exploration well NO 34/9-1 S Cambozola

Valid from: Dec 2022 Rev. no.: 0

REPORT DATE: 08.Jun.2022

PLUG NO: 2

**TOP DEPTH:** 4310

**BOTTOM DEPTH: 4410** 

CASING SIZE: 7"

HOLE DIAMETER: 6"

**CEMENTING TYPE:** 

**REMARKS:** Plug 1 second attempt

Objective:

6/8/2022 12:00:00 AM

Execution:

6/8/2022 12:00:00 AM

| Fluids<br>pumped | Туре                   | Density<br>g/cm3 | Volume<br>m3 | Pump<br>Rate<br>I/min | Pump<br>Press<br>bar | Return | Component | Quantity | Unit | Density<br>g/cm3 | Premixed in mixwater |
|------------------|------------------------|------------------|--------------|-----------------------|----------------------|--------|-----------|----------|------|------------------|----------------------|
| Spacer before    | MUDPUSH II             | 2.10             | 6.5          | 700                   | 60                   |        |           |          |      |                  |                      |
| Slurry           | #18-Slurry HTGT (IDWS) | 2.15             | 6.0          | 620                   | 65                   |        |           |          |      |                  |                      |
| Spacer after     | MUDPUSH II             | 2.10             | 1.5          | 700                   | 60                   |        |           |          |      |                  |                      |

## **Evaluation:**

6/8/2022 12:00:00 AM



Doc. No. 2022-013511

Pilot well NO 34/9-U-1

and Exploration well NO 34/9-1 S Cambozola

Valid from: Dec 2022 Rev. no.: 0

REPORT DATE: 10.Jun.2022

PLUG NO: 3

**TOP DEPTH: 4066** 

**BOTTOM DEPTH: 4366** 

CASING SIZE: 7"

HOLE DIAMETER: 6" CEMENTING TYPE:

**REMARKS:** 

Objective:

6/10/2022 12:00:00 AM

**Execution:** 

6/10/2022 12:00:00 AM

| Fluids<br>pumped | Туре                   | Density<br>g/cm3 | Volume<br>m3 | Pump<br>Rate<br>I/min | Pump<br>Press<br>bar | Return | Component | Quantity | Unit | Density<br>g/cm3 | Premixed in mixwater |
|------------------|------------------------|------------------|--------------|-----------------------|----------------------|--------|-----------|----------|------|------------------|----------------------|
| Spacer before    | MUDPUSH II             | 2.10             | 6.5          | 700                   | 60                   |        |           |          |      |                  |                      |
| Slurry           | #18-Slurry HTGT (IDWS) | 2.15             | 9.2          | 620                   | 70                   |        |           |          |      |                  |                      |
| Spacer after     | MUDPUSH II             | 2.10             | 1.5          | 700                   | 60                   |        |           |          |      |                  |                      |

## **Evaluation:**

6/10/2022 12:00:00 AM



Doc. No. 2022-013511

Pilot well NO 34/9-U-1

and Exploration well NO 34/9-1 S Cambozola

Valid from: Dec 2022 Rev. no.: 0

REPORT DATE: 16.Jun.2022

**PLUG NO:** 5

**TOP DEPTH: 1605** 

**BOTTOM DEPTH: 1805** 

**CASING SIZE: 14"** 

HOLE DIAMETER: 14"
CEMENTING TYPE:

**REMARKS:** 

Objective:

Place 200m cement plug above EZSV

**Execution:** 

Job excecuted as per desig

| Fluids<br>pumped | Туре                   | Density<br>g/cm3 | Volume<br>m3 | Pump<br>Rate<br>I/min | Pump<br>Press<br>bar | Return | Component | Quantity | Unit | Density<br>g/cm3 | Premixed in mixwater |
|------------------|------------------------|------------------|--------------|-----------------------|----------------------|--------|-----------|----------|------|------------------|----------------------|
| Spacer before    | MUDPUSH II             | 1.50             | 6.5          | 2500                  | 60                   |        |           |          |      |                  |                      |
| Slurry           | #17-Slurry HTGT (IDWS) | 1.95             | 15.6         | 400                   | 25                   |        |           |          |      |                  |                      |
| Spacer after     | MUDPUSH II             | 1.50             | 1.5          | 2500                  | 65                   |        |           |          |      |                  |                      |

## **Evaluation:**

6/16/2022 12:00:00 AM



Doc. No. 2022-013511

Pilot well NO 34/9-U-1

and Exploration well NO 34/9-1 S Cambozola Valid from: Dec 2022

Rev. no.: 0

REPORT DATE: 18.Jun.2022

**PLUG NO:** 6

**TOP DEPTH:** 600

**BOTTOM DEPTH:** 700

CASING SIZE: 20"

HOLE DIAMETER: 26"
CEMENTING TYPE:

**REMARKS:** 

## Objective:

Place 17.8m3 (~100\* m) cementplug inside the 20" casing on top of a bridge plug to permanently abandon the well.

#### **Execution:**

6/18/2022 12:00:00 AM

| Fluids pumped | Туре                | Density g/cm3 | Volume<br>m3 | Pump<br>Rate<br>I/min | Pump<br>Press<br>bar | Return | Component | Quantity | Unit | Density<br>g/cm3 | Premixed in mixwater |
|---------------|---------------------|---------------|--------------|-----------------------|----------------------|--------|-----------|----------|------|------------------|----------------------|
| Slurry        | #5-Slurry ST (IDWS) | 1.95          | 17.8         | 600                   | 20                   |        |           |          |      | ground           |                      |

Page 192 of 196

#### **Evaluation:**

6/18/2022 12:00:00 AM



Pilot well NO 34/9-U-1

and Exploration well NO 34/9-1 S Cambozola

Doc. No. 2022-013511

Valid from: Dec 2022 Rev. no.: 0

# Squeeze

WELLBORE ID: NO 34/9-1 S REPORT DATE: 04.May.2022

**SQUEEZE NO:** TOP DEPTH:

BOTTOM DEPTH: CASING SIZE: 11 3/4" HOLE DIAMETER: CEMENTING TYPE:

**REMARKS:** 

Objective:

5/4/2022 12:00:00 AM

**Execution:** 

5/4/2022 12:00:00 AM

| Fluids<br>pumped | Туре                     | Density<br>g/cm3 | Volume<br>m3 | Pump<br>Rate<br>I/min | Pump<br>Press<br>bar | Return | Component | Quantity | Unit | Density<br>g/cm3 | Premixed in mixwater |
|------------------|--------------------------|------------------|--------------|-----------------------|----------------------|--------|-----------|----------|------|------------------|----------------------|
| Spacer before    | SHIELDBOND spacer        | 1.96             | 6.5          | 1500                  | 50                   |        |           |          |      |                  |                      |
| Slurry           | Slurry 11 - GTLLT (Main) | 1.97             | 6.0          | 600                   | 55                   |        |           |          |      |                  |                      |
| Spacer after     | SHIELDBOND spacer        | 1.96             | 1.5          | 1500                  | 55                   |        |           |          |      |                  |                      |

Page 193 of 196

#### **Evaluation:**

5/4/2022 12:00:00 AM



Page 194 of 196

Final well report,

Pilot well NO 34/9-U-1

and Exploration well NO 34/9-1 S Cambozola

Doc. No. 2022-013511

Valid from: Dec 2022 Rev. no.: 0

**REPORT DATE:** 18.May.2022

SQUEEZE NO: TOP DEPTH:

BOTTOM DEPTH: CASING SIZE: 9 7/8" HOLE DIAMETER: CEMENTING TYPE:

REMARKS: Objective:

5/18/2022 12:00:00 AM

**Execution:** 

5/18/2022 12:00:00 AM



Page 195 of 196

Final well report,

Pilot well NO 34/9-U-1

and Exploration well NO 34/9-1 S Cambozola

Doc. No. 2022-013511

Valid from: Dec 2022 Rev. no.: 0

| Fluids<br>pumped | Туре                   | Density<br>g/cm3 | Volume<br>m3 | Pump<br>Rate<br>I/min | Pump<br>Press<br>bar | Return | Component                          | Quantity | Unit    | Density<br>g/cm3 | Premixed in mixwater |
|------------------|------------------------|------------------|--------------|-----------------------|----------------------|--------|------------------------------------|----------|---------|------------------|----------------------|
| Spacer before    | MUDPUSH II             | 2.10             | 8.0          | 500                   | 30                   |        | D241A                              | 21.00    | I/m3    | 0.81             | N                    |
|                  |                        |                  |              |                       |                      |        | B557                               | 21.00    | I/m3    | 0.99             | N                    |
|                  |                        |                  |              |                       |                      |        | D244 Viscosifier                   | 1.20     | kg/m3   | 1.50             | N                    |
|                  |                        |                  |              |                       |                      |        | D242 Antifoam                      | 1.00     | I/m3    | 0.90             | N                    |
|                  |                        |                  |              |                       |                      |        | BARITE                             | 1443.00  | kg/m3   | 4.25             | N                    |
|                  |                        |                  |              |                       |                      |        | B151 High-Temperature<br>Retarder  | 16.00    | I/m3    | 1.13             | N                    |
| Slurry           | #18-Slurry HTGT (IDWS) | 2.15             | 8.5          | 300                   | 30                   |        | D240 Dispersant                    | 5.00     | l/100kg | 1.13             | N                    |
|                  |                        |                  |              |                       |                      |        | D242 Antifoam                      | 1.00     | l/100kg | 0.90             | N                    |
|                  |                        |                  |              |                       |                      |        | D155 Antisedimentation agent       | 9.00     | l/100kg | 1.40             | N                    |
|                  |                        |                  |              |                       |                      |        | D168 UNIFLAC L                     | 2.50     | l/100kg | 1.08             | N                    |
|                  |                        |                  |              |                       |                      |        | D194 Liquid Trifunctional Additive | 3.10     | l/100kg | 1.31             | N                    |
|                  |                        |                  |              |                       |                      |        | D157 Weighting Agent               | 40.00    | %       | 4.80             | N                    |

**Evaluation:** 

5/18/2022 12:00:00 AM



Final well report,
Pilot well NO 34/9-U-1
and Exploration well NO 34/9-1 S Cambozola

Doc. No. 2022-013511

Valid from: Dec 2022 Rev. no.: 0

# **Enclosures**

- 1. Completion log NO 34/9-U-1
- 2. Completion log NO 34/9-1 S

Classification: Restricted Status: Final www.equinor.com